出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2016/01/18 04:05:03」(JST)
Nucleation is the first step in the formation of either a new thermodynamic phase or a new structure via self-assembly or self-organization. Nucleation is typically defined to be the process that determines how long an observer has to wait before the new phase or self-organized structure appears. Nucleation is often found to be very sensitive to impurities in the system. Because of this, it is often important to distinguish between heterogeneous nucleation and homogeneous nucleation. Heterogeneous nucleation occurs at nucleation sites on surfaces in the system.[1] Homogeneous nucleation occurs away from a surface.
Nucleation is usually a stochastic process, so even in two identical systems nucleation will occur at different times.[1][2][3] This behaviour is similar to radioactive decay. A common mechanism is illustrated in the animation to the right. This shows nucleation of a new phase (shown in red) in an existing phase (white). In the existing phase microscopic fluctuations of the red phase appear and decay continuously, until an unusually large fluctuation of the new red phase is so large it is more favourable for it to grow than to shrink back to nothing. This nucleus of the red phase then grows and converts the system to this phase. The standard theory that describes this behaviour for the nucleation of a new thermodynamic phase is called classical nucleation theory.
For nucleation of a new thermodynamic phase, such as the formation of ice in water below 0 C, if the system is not evolving with time and nucleation occurs in one step, then the probability that nucleation has not occurred should undergo exponential decay as seen in radioactive decay. This is seen for example in the nucleation of ice in supercooled small water droplets.[4] The decay rate of the exponential gives the nucleation rate. There is a widely used approximate theory for estimating these rates, and how they vary with variables such as temperature. This is classical nucleation theory. It correctly predicts that the time you have to wait for nucleation decreases extremely rapidly when supersaturated.[1][2]
It is not just new phases such as liquids and crystals that form via nucleation followed by growth. The self-assembly process that forms objects like the amyloid aggregates associated with Alzheimer's disease also starts with nucleation.[5] Energy consuming self-organising systems such as the microtubules in cells also show nucleation and growth.
Heterogeneous nucleation, nucleation with the nucleus at a surface, is much more common than homogeneous nucleation.[1][3] Heterogeneous nucleation is typically understood to be much faster than homogeneous nucleation using classical nucleation theory. This predicts that the nucleation slows exponentially with the height of a free energy barrier ΔG*. This barrier comes from the free energy penalty of forming the surface of the growing nucleus. For homogeneous nucleation the nucleus is approximated by a sphere but as we can see in the schematic of macroscopic droplets to the right, droplets on surfaces are not complete spheres and so the area of the interface between the droplet and the surrounding fluid is less than a sphere's . This reduction in surface area of the nucleus reduces the height of the barrier to nucleation and so speeds nucleation up exponentially.[2]
Nucleation can also start at the surface of a liquid. For example computer simulations of gold nanoparticles show that the crystal phase nucleates at the liquid gold surface.[6]
Classical nucleation theory makes a number of assumptions, for example it treats a microscopic nucleus as if it is a macroscopic droplet with a well defined surface whose free energy is estimated using an equilibrium property: the interfacial tension σ. For a nucleus that may be only of order ten molecules across it is not always clear that we can treat something so small as a volume plus a surface. Also nucleation is an inherently out of thermodynamic equilibrium phenomenon so it is not always obvious that its rate can be estimated using equilibrium properties.
However, modern computers are powerful enough to calculate essentially exact nucleation rates for simple models. These have been compared with the classical theory, for example for the case of nucleation of the crystal phase in the model of hard spheres. This is a model of perfectly hard spheres in thermal motion, and is a simple model of some colloids. For the crystallization of hard spheres the classical theory is a very reasonable approximate theory.[7] So for the simple models we can study classical nucleation theory works quite well, but we do not know if it works equally well for say complex molecules crystallising out of solution.
Phase transition processes can also be explained in terms of spinodal decomposition, where phase separation is delayed until the system enters the unstable region where a small perturbation in composition leads to a decrease in energy and, thus, spontaneous growth of the perturbation.[8] This region of a phase diagram is known as the spinodal region and the phase separation process is known as spinodal decomposition and may be governed by the Cahn–Hilliard equation.
It is typically difficult to experimentally study nucleation. The nucleus is extremely microscopic and thus too small to be directly observed. In large liquid volumes there are typically multiple nucleation events and it is difficult to disentangle the effects of nucleation from those of growth of the nucleated phase. These problems can be overcome by working with small droplets. As nucleation is stochastic, many droplets are needed so that statistics for the nucleation events can be obtained.
To the right is shown an example set of nucleation data. It is for the nucleation at constant temperature and hence supersaturation of the crystal phase in small droplets of supercooled liquid tin; this is the work of Pound and La Mer.[9]
Nucleation occurs in different droplets at different times, hence the fraction is not a simple step function that drops sharply from one to zero at one particular time. The red curve is a fit of a Gompertz function to the data. This is a simplified version of the model Pound and La Mer used to model their data.[9] The model assumes that nucleation occurs due to impurity particles in the liquid tin droplets, and it makes the simplifying assumption that all impurity particles produce nucleation at the same rate. It also assumes that these particles are Poisson distributed among the liquid tin droplets. The fit values are that the nucleation rate due to a single impurity particle is 0.02/s, and the average number of impurity particles per droplet is 1.2. Note that about 30% of the tin droplets never freeze; the data plateaus at a fraction of about 0.3. Within the model this is assumed to be because, by chance, these droplets do not have even one impurity particle and so there is no heterogeneous nucleation. Homogeneous nucleation is assumed to be negligible on the timescale of this experiment. The remaining droplets freeze in a stochastic way, at rates 0.02/s if they have one impurity particle, 0.04/s if they have two, and so on.
This data is just one example but it does illustrate common features of the nucleation of crystals in that there is clear evidence for heterogeneous nucleation, and that nucleation is clearly stochastic.
Nucleation is a topic of wide interest in many scientific studies and technological processes. It is used heavily in the chemical industry for cases such as in the preparation of metallic ultradispersed powders that can serve as catalysts. For example, platinum deposited onto TiO2 nanoparticles catalyses the liberation of hydrogen from water.[10] It is an important factor in the semiconductor industry, as the gap width in semiconductors is influenced by the size of metal nanoclusters.[11] As another example, understanding calcium carbonate nucleation could help scientists control its formation to keep carbon dioxide from getting into the atmosphere.[12]
Instruments such as the bubble chamber and the cloud chamber rely on nucleation.
|access-date=
requires |url=
(help)
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
リンク元 | 「核形成」「核生成」「核を持つ」「nucleation」 |
拡張検索 | 「enucleate」「binucleate」「anucleate」「anucleated」 |
関連記事 | 「nucleated」 |
.