出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2012/12/08 23:54:44」(JST)
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. (March 2009) |
Center pivot irrigation sprinkler nozzles, used in crop irrigation
A nozzle is a device designed to control the direction or characteristics of a fluid flow (especially to increase velocity) as it exits (or enters) an enclosed chamber or pipe via an orifice.
A nozzle is often a pipe or tube of varying cross sectional area, and it can be used to direct or modify the flow of a fluid (liquid or gas). Nozzles are frequently used to control the rate of flow, speed, direction, mass, shape, and/or the pressure of the stream that emerges from them.
Contents
|
A gas jet, fluid jet, or hydro jet is a nozzle intended to eject gas or fluid in a coherent stream into a surrounding medium. Gas jets are commonly found in gas stoves, ovens, or barbecues. Gas jets were commonly used for light before the development of electric light. Other types of fluid jets are found in carburetors, where smooth calibrated orifices are used to regulate the flow of fuel into an engine, and in jacuzzis or spas.
Another specialized jet is the laminar jet. This is a water jet that contains devices to smooth out the pressure and flow, and gives laminar flow, as its name suggests. This gives better results for fountains.
Nozzles used for feeding hot blast into a blast furnace or forge are called tuyeres.
Frequently the goal is to increase the kinetic energy of the flowing medium at the expense of its pressure and internal energy.
Nozzles can be described as convergent (narrowing down from a wide diameter to a smaller diameter in the direction of the flow) or divergent (expanding from a smaller diameter to a larger one). A de Laval nozzle has a convergent section followed by a divergent section and is often called a convergent-divergent nozzle ("con-di nozzle").
Convergent nozzles accelerate subsonic fluids. If the nozzle pressure ratio is high enough the flow will reach sonic velocity at the narrowest point (i.e. the nozzle throat). In this situation, the nozzle is said to be choked.
Increasing the nozzle pressure ratio further will not increase the throat Mach number beyond unity. Downstream (i.e. external to the nozzle) the flow is free to expand to supersonic velocities. Note that the Mach 1 can be a very high speed for a hot gas; since the speed of sound varies as the square root of absolute temperature. Thus the speed reached at a nozzle throat can be far higher than the speed of sound at sea level. This fact is used extensively in rocketry where hypersonic flows are required, and where propellant mixtures are deliberately chosen to further increase the sonic speed.
Divergent nozzles slow fluids, if the flow is subsonic, but accelerate sonic or supersonic fluids.
Convergent-divergent nozzles can therefore accelerate fluids that have choked in the convergent section to supersonic speeds. This CD process is more efficient than allowing a convergent nozzle to expand supersonically externally. The shape of the divergent section also ensures that the direction of the escaping gases is directly backwards, as any sideways component would not contribute to thrust.
A jet exhaust produces a net thrust from the energy obtained from combusting fuel which is added to the inducted air. This hot air is passed through a high speed nozzle, a propelling nozzle which enormously increases its kinetic energy.[1]
For a given mass flow, greater thrust is obtained with a higher exhaust velocity, but the best energy efficiency is obtained when the exhaust speed is well matched with the airspeed. However, no jet aircraft can maintain velocity while exceeding its exhaust jet speed, due to momentum considerations. Supersonic jet engines, like those employed in fighters and SST aircraft (e.g. Concorde), need high exhaust speeds. Therefore supersonic aircraft very typically use a CD nozzle despite weight and cost penalties. Subsonic jet engines employ relatively low, subsonic, exhaust velocities. They thus employ simple convergent nozzles. In addition, bypass nozzles are employed giving even lower speeds.
Rocket motors use convergent-divergent nozzles with very large area ratios so as to maximise thrust and exhaust velocity and thus extremely high nozzle pressure ratios are employed. Mass flow is at a premium since all the propulsive mass is carried with vehicle, and very high exhaust speeds are desirable.
Magnetic nozzles have also been proposed for some types of propulsion, such as VASIMR, in which the flow of plasma is directed by magnetic fields instead of walls made of solid matter.
Many nozzles produce a very fine spray of liquids.
Vacuum cleaner nozzles come in several different shapes.
Some nozzles are shaped to produce a stream that is of a particular shape. For example extrusion molding is a way of producing lengths of metals or plastics or other materials with a particular cross-section. This nozzle is typically referred to as a die.
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
.