出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2013/04/23 16:13:30」(JST)
Non-ionizing (or non-ionising) radiation refers to any type of electromagnetic radiation that does not carry enough energy per quantum to ionize atoms or molecules—that is, to completely remove an electron from an atom or molecule.[1] Instead of producing charged ions when passing through matter, the electromagnetic radiation has sufficient energy only for excitation, the movement of an electron to a higher energy state. The region at which radiation becomes considered as "ionizing" is not well defined, since different molecules and atoms ionize at different energies. The usual definitions have suggested that radiation with particle or photon energies less than 10 electronvolts (eV) be considered non-ionizing. Another suggested threshold is 33 electronvolts, which is the energy needed to ionize water molecules. The light from the Sun that reaches the earth is largely composed of non-ionizing radiation, since the ionizing far-ultraviolet rays have been filtered out by the gases in the atmosphere, particularly oxygen. The remaining ultraviolet radiation from the Sun is in the non-ionizing band, and causes molecular damage (for example, sunburn) by photochemical and free-radical-producing means that do not ionize.[2]
Different biological effects are observed for different types of non-ionizing radiation.[3][2] A difficulty is that there is no controversy that the upper frequencies of non-ionizing radiation near these energies (much of the spectrum of UV light and some visible light) is capable of non-thermal biological damage, similar to ionizing radiation. Health debate therefore centers on the non-thermal effects of radiation of much lower frequencies (microwave and radiowave radiation).
Contents
|
Near ultraviolet, visible light, infrared, microwave, radio waves, and low-frequency RF (longwave) are all examples of non-ionizing radiation. By contrast, far ultraviolet light, X-rays, gamma-rays, and all particle radiation from radioactive decay are regarded as ionizing. Visible and near ultraviolet electromagnetic radiation may induce photochemical reactions, or accelerate radical reactions, such as photochemical aging of varnishes[4] or the breakdown of flavoring compounds in beer to produce the "lightstruck flavor".[5] Near ultraviolet radiation, although technically non-ionizing, may still excite and cause photochemical reactions in some molecules. This happens because at ultraviolet photon energies, molecules may become electronically-excited or promoted to free-radical form, even without ionization taking place.
The occurrence of ionization depends on the energy of the individual particles or waves, and not on their number. An intense flood of particles or waves will not cause ionization if these particles or waves do not carry enough energy to be ionizing, unless they raise the temperature of a body to a point high enough to ionize small fractions of atoms or molecules by the process of thermal-ionization. In such cases, even "non-ionizing radiation" is capable of causing thermal-ionization if it deposits enough heat to raise temperatures to ionization energies. These reactions occur at far higher energies than with ionizing radiation, which requires only single particles to ionize. A familiar example of thermal ionization is the flame-ionization of a common fire, and the browning (chemical process) reactions in common food items induced by infrared radiation, during broiling-type cooking.
The energy of particles of non-ionizing radiation is low, and instead of producing charged ions when passing through matter, non-ionizing electromagnetic radiation has only sufficient energy to change the rotational, vibrational or electronic valence configurations of molecules and atoms. This produces thermal effects. The possible non-thermal effects of non-ionizing forms of radiation on living tissue have only recently been studied. Much of the current debate is about relatively low levels of exposure to RF radiation from mobile phones and base stations producing "non-thermal" effects. Some experiments have suggested that there may be biological effects at non-thermal exposure levels, but the evidence for production of health hazard is contradictory and unproven. The scientific community and international bodies acknowledge that further research is needed to improve our understanding in some areas. Meanwhile the consensus is that there is no consistent and convincing scientific evidence of adverse health effects caused by RF radiation at powers sufficiently low that no thermal health effects are produced.[3][2]
Non-ionizing radiation can produce non-mutagenic[citation needed] effects such as inciting thermal energy in biological tissue that can lead to burns.
In terms of potential biological effects, the non-ionizing portion of the spectrum can be subdivided into:
[3] | Source | Wavelength | Frequency | Biological effects |
---|---|---|---|---|
UVA | Black light, Sunlight | 318–400 nm | 750–950 THz | Eye – photochemical cataract; skin – erythema, inc. pigmentation |
Visible light | Sunlight, fire, LEDs, light bulbs, Lasers | 400–780 nm | 385–750 THz | Skin photoaging; eye – photochemical & thermal retinal injury |
IR-A | Sunlight, thermal radiation, incandescent light bulbs, Lasers, remote controls | 780 nm – 1.4 µm | 215–385 THz | Eye – thermal retinal injury, thermal cataract; skin burn |
IR-B | Sunlight, Thermal radiation, Incandescent light bulbs, Lasers | 1.4–3 µm | 100–215 THz | Eye – corneal burn, cataract; skin burn |
IR-C | Sunlight, Thermal radiation, Incandescent light bulbs, Far-infrared laser | 3 µm – 1 mm | 300 GHz – 100 THz | Eye – corneal burn, cataract; heating of body surface |
Microwave | PCS phones, some mobile/cell phones, microwave ovens, cordless phones, motion detectors, long-distance telecommunications, radar, Wi-Fi | 1 mm – 33 cm | 1–300 GHz | Heating of body tissue |
Radio-frequency radiation | Mobile/cell phones, television, FM, AM, shortwave, CB, cordless phones | 33 cm – 3 km | 100 kHz – 1 GHz | Heating of body tissue, raised body temperature |
Low-frequency RF | Power lines | >3 km | <100 kHz | Cumulation of charge on body surface; disturbance of nerve & muscle responses[citation needed] |
Static field[2] | Strong magnets, MRI | Infinite | 0 Hz (technically static fields are not "radiation") | Magnetic – vertigo/nausea; electric – charge on body surface |
Ultraviolet light can cause burns to skin[6] and cataracts to the eyes.[6] Ultraviolet is classified into near, medium and far UV according to energy, where near and medium ultraviolet are technically non-ionizing, but where all UV wavelengths can cause photochemical reactions that to some extent mimic ionization (including DNA damage and carcinogenesis). UV radiation above 10 eV (wavelength shorter than 125 nm) is considered ionizing. However, the rest of the UV spectrum from 3.1 eV (400 nm) to 10 eV, although technically non-ionizing, can produce photochemical reactions that are damaging to molecules by means other than simple heat. Since these reactions are often very similar to those caused by ionizing radiation, often the entire UV spectrum is considered to be equivalent to ionization radiation in its interaction with many systems (including biological systems).
For example, ultraviolet light, even in the non-ionizing range, can produce free radicals that induce cellular damage, and can be carcinogenic. Photochemistry such as pyrimidine dimer formation in DNA can happen through most of the UV band, including much of the band that is formally non-ionizing. Ultraviolet light induces melanin production from melanocyte cells to cause sun tanning of skin. Vitamin D is produced on the skin by a radical reaction initiated by UV radiation.
Plastic (polycarbonate) sunglasses generally absorb UV radiation. UV overexposure to the eyes causes snow blindness, which is a risk particularly on the sea or when there is snow on the ground.
Light, or visible light, is a very narrow range of electromagnetic radiation of a wavelength that is visible to the human eye (about 400–700 nm), or up to 380–750 nm.[3] More broadly, physicists refer to light as electromagnetic radiation of all wavelengths, whether visible or not.
Infrared (IR) light is electromagnetic radiation with a wavelength between 0.7 and 300 micrometers, which equates to a frequency range between approximately 1 and 430 THz. IR wavelengths are longer than that of visible light, but shorter than that of terahertz radiation microwaves. Bright sunlight provides an irradiance of just over 1 kilowatt per square meter at sea level. Of this energy, 527 watts is infrared radiation, 445 watts is visible light, and 32 watts is ultraviolet radiation.[3]
Microwaves are electromagnetic waves with wavelengths ranging from as long as one meter to as short as one millimeter, or equivalently, with frequencies between 300 MHz (0.3 GHz) and 300 GHz. This broad definition includes both UHF and EHF (millimeter waves), and various sources use different boundaries.[3] In all cases, microwave includes the entire SHF band (3 to 30 GHz, or 10 to 1 cm) at minimum, with RF engineering often putting the lower boundary at 1 GHz (30 cm), and the upper around 100 GHz (3mm).
Radio waves are a type of electromagnetic radiation with wavelengths in the electromagnetic spectrum longer than infrared light. Like all other electromagnetic waves, they travel at the speed of light. Naturally occurring radio waves are made by lightning, or by astronomical objects. Artificially generated radio waves are used for fixed and mobile radio communication, broadcasting, radar and other navigation systems, satellite communication, computer networks and innumerable other applications. Different frequencies of radio waves have different propagation characteristics in the Earth's atmosphere; long waves may cover a part of the Earth very consistently, shorter waves can reflect off the ionosphere and travel around the world, and much shorter wavelengths bend or reflect very little and travel on a line of sight.
Very low frequency or VLF is the radio frequencies (RF) in the range of 3 to 30 kHz. Since there is not much bandwidth in this band of the radio spectrum, only the very simplest signals are used, such as for radio navigation. Also known as the myriameter band or myriameter wave as the wavelengths range from ten to one myriameter (an obsolete metric unit equal to 10 kilometers)
Extremely low frequency (ELF) is the range of radiation frequencies from 3 to 30 Hz. In atmosphere science, an alternative definition is usually given, from 3 Hz to 3 kHz.[3] In the related magnetosphere science, the lower frequency electromagnetic oscillations (pulsations occurring below ~3 Hz) are considered to be in the ULF range, which is thus also defined differently from the ITU Radio Bands.
Thermal radiation, a common synonym for infra-red when it occurs at temperatures often encountered on Earth, is the process by which the surface of an object radiates its thermal energy in the form of electromagnetic waves. Infrared radiation from a common household radiator or electric heater is an example of thermal radiation, as is the heat and light (IR and visible EM waves) emitted by a glowing incandescent light bulb. Thermal radiation is generated when heat from the movement of charged particles within atoms is converted to electromagnetic radiation. The emitted wave frequency of the thermal radiation is a probability distribution depending only on temperature, and for a black body is given by Planck's law of radiation. Wien's law gives the most likely frequency of the emitted radiation, and the Stefan–Boltzmann law gives the heat intensity.
Parts of the electromagnetic spectrum of thermal radiation may be ionizing, if the object emitting the radiation is hot enough (has a high enough temperature). A common example of such radiation is sunlight, which is thermal radiation from the Sun's photosphere and which contains enough ultraviolet light to cause ionization in many molecules and atoms. An extreme example is the flash from the detonation of a nuclear weapon, which emits a large number of ionizing X-rays purely as a product of heating the atmosphere around the bomb to extremely high temperatures.
As noted above, even low-frequency thermal radiation may cause temperature-ionization whenever it deposits sufficient thermal energy to raises temperatures to a high enough level. Common examples of this are the ionization (plasma) seen in common flames, and the molecular changes caused by the "browning" in food-cooking, which is a chemical process that begins with a large component of ionization.
Black body radiation is radiation from an idealized radiator that emits at any temperature the maximum possible amount of radiation at any given wavelength. A black body will also absorb the maximum possible incident radiation at any given wavelength. The radiation emitted covers the entire electromagnetic spectrum and the intensity (power/unit-area) at a given frequency is dictated by Planck's law of radiation. A black body at temperatures at or below room temperature would thus appear absolutely black as it would not reflect any light. Theoretically a black body emits electromagnetic radiation over the entire spectrum from very low frequency radio waves to X-rays. The frequency at which the black body radiation is at maximum is given by Wien's displacement law.
|
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
リンク元 | 「非電離放射線」「非電離放射」「非イオン化放射」 |
関連記事 | 「radiation」 |
.