"E235" redirects here. For the Japanese train type, see E235 series.
Natamycin
|
|
Names |
IUPAC name
(1R,3S,5R,7R,8E,12R,14E,16E,18E,20E,22R,24S,25R,26S)-22-[(3-amino-3,6-dideoxy-D-mannopyranosyl)oxy]-1,3,26-trihydroxy-12-methyl-10-oxo-6,11,28-trioxatricyclo[22.3.1.05,7]octacosa-8,14,16,18,20-pentaene-25-carboxylic acid
|
Identifiers |
CAS Number
|
7681-93-8 Y |
ChEMBL |
ChEMBL1200656 Y |
ChemSpider |
10468784 Y |
DrugBank |
DB00826 |
Jmol interactive 3D |
Image |
KEGG |
C08073 |
PubChem |
441382 |
UNII |
8O0C852CPO Y |
InChI
-
InChI=1S/C33H47NO13/c1-18-10-8-6-4-3-5-7-9-11-21(45-32-30(39)28(34)29(38)19(2)44-32)15-25-27(31(40)41)22(36)17-33(42,47-25)16-20(35)14-24-23(46-24)12-13-26(37)43-18/h3-9,11-13,18-25,27-30,32,35-36,38-39,42H,10,14-17,34H2,1-2H3,(H,40,41)/b4-3+,7-5+,8-6+,11-9+,13-12+/t18-,19-,20+,21+,22+,23-,24-,25+,27-,28+,29-,30+,32+,33-/m1/s1 Y
Key: NCXMLFZGDNKEPB-FFPOYIOWSA-N Y
-
InChI=1/C33H47NO13/c1-18-10-8-6-4-3-5-7-9-11-21(45-32-30(39)28(34)29(38)19(2)44-32)15-25-27(31(40)41)22(36)17-33(42,47-25)16-20(35)14-24-23(46-24)12-13-26(37)43-18/h3-9,11-13,18-25,27-30,32,35-36,38-39,42H,10,14-17,34H2,1-2H3,(H,40,41)/b4-3+,7-5+,8-6+,11-9+,13-12+/t18-,19-,20+,21+,22+,23-,24-,25+,27-,28+,29-,30+,32+,33-/m1/s1
Key: NCXMLFZGDNKEPB-FFPOYIOWBQ
|
SMILES
-
OC(=O)[C@@H]3[C@@H](O)C[C@@]2(O)C[C@@H](O)C[C@H]4O[C@@H]4/C=C/C(=O)O[C@H](C)C\C=C\C=C\C=C\C=C\[C@H](O[C@@H]1O[C@H](C)[C@@H](O)[C@H](N)[C@@H]1O)C[C@@H]3O2
|
Properties |
Chemical formula
|
C33H47NO13 |
Molar mass |
665.725 g/mol |
Appearance |
White to cream-colored crystalline powder |
Density |
1.35 g/ml |
Melting point |
Darkens at ±200 °C with vigorous decomposition at 280-300 °C |
Solubility in water
|
0.39 mg/ml |
Pharmacology |
ATC code |
A01AB10
A07AA03, D01AA02, G01AA02, S01AA10 |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
N verify (what is YN ?) |
Infobox references |
|
|
Natamycin (INN), also known as pimaricin and sometimes sold as Natacyn, is a naturally occurring antifungal agent produced during fermentation by the bacterium Streptomyces natalensis, commonly found in soil. Natamycin has a very low solubility in water; however, natamycin is effective at very low levels. There is an MIC (minimum inhibitory concentration) of less than 10 ppm for most molds. Natamycin is classified as a macrolide polyene antifungal and, as a drug, is used to treat fungal keratitis, an infection of the eye. It is especially effective against Aspergillus and Fusarium corneal infections. Other common members of the polyene macrolide antifungal family are amphotericin B, nystatin, and filipin. Natamycin is also used in the food industry as a natural preservative.
Contents
- 1 Uses
- 2 Safety
- 3 External links
- 4 References
Uses
In foods
Natamycin has been used for decades in the food industry as a hurdle to fungal outgrowth in dairy products, meats, and other foods. Potential advantages for the usage of natamycin might include the replacement of traditional chemical preservatives, a neutral flavor impact, and less dependence on pH for efficacy, as is common with chemical preservatives. It can be applied in a variety of ways: as an aqueous suspension (such as mixed into a brine) that is sprayed on the product or that the product is dipped into, or in powdered form (along with an anticaking agent such as cellulose) sprinkled on or mixed into the product. While not currently approved for use on meats in the United States, some countries allow natamycin to be applied to the surface of dry and fermented sausages to prevent mold growth on the casing. Also, natamycin is approved for various dairy applications in the United States. More specifically, natamycin is commonly used in products such as cottage cheese, sour cream, yogurt, shredded cheeses, cheese slices and packaged salad mixes. One of the reasons for food producers to use natamycin is to replace the artificial preservative sorbic acid.[1]
As a food additive, it has E number E235. Throughout the European Union, it is only approved as a surface preservative for certain cheese and dried sausage products. It must not be detectable 5 mm below the rind. While natamycin is approved in different applications with different level in the world, it is approved in over 150 countries worldwide.[2]
The European Food Safety Authority (EFSA) panel took over the responsibilities of providing scientific food safety advice to the EU from the Scientific Committee on Food (SCF) in 2002.[3] In 2009 the (EFSA) European Food Safety Authority considered that the proposed use levels of natamycin are safe if it is used for the surface treatment for these cheese and sausages types.[4]
Medical
Natamycin is used to treat fungal infections, including Candida, Aspergillus, Cephalosporium, Fusarium and Penicillium. It is applied topically as a cream, in eye drops, or (for oral infections) in a lozenge. Natamycin shows negligible absorption into the body when administered in these ways. When taken orally, little or none is absorbed from the gastrointestinal tract, making it inappropriate for systemic infections.[5]
Safety
Natamycin does not have acute toxicity. In animal studies, the lowest LD50 found was 2.5-4.5 mg/kg.[6] In rats, the LD50 is ≥2300 mg/kg, and doses of 500 mg/kg/day over 2 years caused no detectable differences in survival rate, growth, or incidence of tumors. The metabolites of natamycin also lack toxicity. The breakdown products of natamycin under various storage conditions may have a lower LD50 than natamycin, but in all cases the numbers are quite high. In humans, a dose of 500 mg/kg/day repeated over multiple days caused nausea, vomiting, and diarrhea.[7]
There is no evidence that natamycin, at either pharmacological levels or levels encountered as a food additive, can harm normal intestinal flora, but definitive research may not be available.[7]
The European Food Safety Authority (EFSA) has concluded that the use of natamycin as a food additive has no relevant risk for the development of resistant fungi.
External links
References
- ^ Kraft cheese singles ditch artificial preservatives
- ^ Regulatory information: www.natamycin.com
- ^ Safety and regulation: the formal process for analyzing the test data on food additives
- ^ Scientific Opinion on the use of natamycin (E 235) as a food additive
- ^ Sweetman, S. (2004). Martindale: The Complete Drug Reference
- ^ Oostendorp, J.G. (1981). "Natamysin(R)". Antonie van Leeuwenhoek 47: 170–1.
- ^ a b Mattia, A. et al. Safety evaluation of certain food additives and contaminants: natamicin (pimaricin). WHO Food Additives Series #48.
Stomatological preparations (A01)
|
|
Caries prophylaxis |
- Dectaflur
- Olaflur
- Sodium fluoride
- Sodium monofluorophosphate
- Stannous fluoride
|
|
Infection and antiseptics |
- Amphotericin B
- Benzoxonium chloride
- Chlorhexidine
- Chlortetracycline
- Clotrimazole
- Cetylpyridinium chloride
- Domiphen bromide
- Doxycycline
- Eugenol
- Hexetidine
- Hydrogen peroxide
- Mepartricin
- Metronidazole
- Miconazole
- Minocycline
- Natamycin
- Neomycin
- Oxyquinoline
- Polynoxylin
- Sodium perborate
- Tetracycline
- Tibezonium iodide
|
|
Corticosteroids
(Glucocorticoids) |
- Dexamethasone
- Hydrocortisone
- Triamcinolone
|
|
Other |
- Amlexanox
- Acetylsalicylic acid
- Becaplermin
- Benzydamine
- Epinephrine/Adrenalone
|
|
Antidiarrheals, intestinal anti-inflammatory and anti-infective agents (A07)
|
|
Rehydration |
|
|
Intestinal anti-infectives |
- Antibiotics
- Amphotericin B
- Colistin
- Fidaxomicin
- Kanamycin
- Natamycin
- Neomycin
- Nystatin
- Paromomycin
- Polymyxin B
- Rifaximin
- Streptomycin
- Vancomycin
- Sulfonamides
- Phthalylsulfathiazole
- Succinylsulfathiazole
- Sulfaguanidine
|
|
Intestinal adsorbents |
- Charcoal
- Bismuth
- Pectin
- Kaolin
- Crospovidone
- Attapulgite
- Diosmectite
|
|
Antipropulsives (opioids) |
- Opium tincture (laudanum)
- Codeine
- Morphine
- Camphorated opium tincture (paregoric)
- crosses BBB: Diphenoxylate (Diphenoxylate/atropine)
- Difenoxin
- does not cross BBB: Eluxadoline
- Loperamide
|
|
Intestinal anti-inflammatory agents |
- corticosteroids acting locally
- Prednisolone
- Hydrocortisone
- Prednisone
- Betamethasone
- Tixocortol
- Budesonide
- Beclometasone
- antiallergic agents, excluding corticosteroids
- aminosalicylic acid and similar agents
- Sulfasalazine
- Mesalazine
- Olsalazine
- Balsalazide
|
|
Antidiarrheal micro-organisms |
|
|
Other antidiarrheals |
- Albumin tannate
- Ceratonia
- Crofelemer
- Octreotide
- Racecadotril
|
|
Antifungals (D01 and J02)
|
|
Wall/
membrane |
Ergosterol
inhibitors |
Azoles
(lanosterol 14
alpha-demethylase inhibitors) |
Imidazoles |
- Topical: bifonazole‡
- chlormidazole‡
- croconazole‡
- fenticonazole‡
- isoconazole‡
- luliconazole
- neticonazole‡
- omoconazole‡
- butoconazole
- clotrimazole#
- econazole
- ketoconazole
- miconazole#
- oxiconazole
- sertaconazole
- sulconazole
- tioconazole
|
|
Triazoles |
- Topical: fluconazole#, fosfluconazole
- efinaconazole
- terconazole
- Systemic: hexaconazole‡
- isavuconazole
- fluconazole#
- itraconazole
- posaconazole
- voriconazole
|
|
Thiazoles |
|
|
|
Polyene antimycotics
(ergosterol binding) |
- Topical: hamycin‡
- natamycin
- nystatin#
Systemic: amphotericin B#, hamycin‡
|
|
Allylamines
(squalene monooxygenase
inhibitors) |
- Topical: amorolfine‡
- butenafine
- naftifine
- terbinafine
Systemic: terbinafine
|
|
|
β-glucan synthase
inhibitors |
- echinocandins (anidulafungin
- caspofungin
- micafungin)
|
|
|
Intracellular |
Pyrimidine analogues/
thymidylate synthase inhibitors |
|
|
Mitotic inhibitors |
|
|
Aminoacyl tRNA synthetase inhibitors |
|
|
|
Others |
- bromochlorosalicylanilide
- methylrosaniline
- tribromometacresol
- undecylenic acid
- polynoxylin
- chlorophetanol
- chlorphenesin
- ticlatone
- sulbentine
- ethylparaben
- haloprogin
- salicylic acid
- selenium disulfide#
- ciclopirox
- amorolfine‡
- dimazole
- tolnaftate
- tolciclate
- sodium thiosulfate#
- Whitfield's ointment#
- potassium iodide#
- taurolidine
- tea tree oil
- citronella oil
- lemon grass
- orange oil
- patchouli
- lemon myrtle
- PCP: pentamidine
- dapsone
- atovaquone
|
|
- #WHO-EM
- ‡Withdrawn from market
- Clinical trials:
- †Phase III
- §Never to phase III
|
|
Gynecological anti-infectives and antiseptics (G01)
|
|
Antibiotics |
- Candicidin
- Chloramphenicol
- Hachimycin
- Oxytetracycline
- Carfecillin
- Mepartricin
- Clindamycin
- Pentamycin
|
|
Arsenic compounds |
|
|
Quinoline derivatives |
- Diiodohydroxyquinoline
- Clioquinol
- Chlorquinaldol
- Dequalinium
- Broxyquinoline
- Oxyquinoline
|
|
Organic acids |
- Lactic acid
- Acetic acid
- Ascorbic acid
|
|
Sulfonamides |
|
|
Antifungals |
Imidazoles |
- Metronidazole
- Clotrimazole
- Miconazole
- Econazole
- Ornidazole
- Isoconazole
- Tioconazole
- Ketoconazole
- Fenticonazole
- Azanidazole
- Propenidazole
- Butoconazole
- Omoconazole
- Oxiconazole
- Flutrimazole
|
|
Triazoles |
|
|
Polyenes |
- Nystatin
- Natamycin
- Amphotericin B
|
|
Other |
- Ciclopirox
- Methylrosaniline
|
|
|
Other |
- Clodantoin
- Inosine
- Policresulen
- Nifuratel
- Furazolidone
- Povidone-iodine
- Protiofate
- Lactobacillus fermentum
- Copper usnate
|
|