出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2014/05/07 16:09:39」(JST)
Lycopene | |
---|---|
IUPAC name
ψ,ψ-Carotene |
|
Other names
(6E,8E,10E,12E,14E,16E,18E,20E,22E,24E,26E)- 2,6,10,14,19,23,27,31-Octamethyldotriaconta-2,6,8,10,12,14,16,18,20,22,24,26,30-tridecaene |
|
Identifiers | |
CAS number | 502-65-8 Y |
PubChem | 446925 |
ChemSpider | 394156 Y |
UNII | SB0N2N0WV6 Y |
EC number | 207-949-1 |
ChEBI | CHEBI:15948 Y |
ChEMBL | CHEMBL501174 Y |
Jmol-3D images | Image 1 |
SMILES
|
|
InChI
|
|
Properties | |
Molecular formula | C40H56 |
Molar mass | 536.87 g mol−1 |
Appearance | Deep red solid |
Density | 0.889 g/mL |
Melting point | 173 °C (343 °F; 446 K) |
Solubility in water | Insoluble |
Hazards | |
MSDS | External MSDS |
NFPA 704 |
1
0
0
|
Supplementary data page | |
Structure and properties |
n, εr, etc. |
Thermodynamic data |
Phase behaviour Solid, liquid, gas |
Spectral data | UV, IR, NMR, MS |
Except where noted otherwise, data are given for materials in their standard state (at 25 °C (77 °F), 100 kPa) | |
Y (verify) (what is: Y/N?) | |
Infobox references | |
Lycopene (from the New Latin word lycopersicum, referring to the tomato species) is a bright red carotene and carotenoid pigment and phytochemical found in tomatoes and other red fruits and vegetables, such as red carrots, watermelons, gac, and papayas (but not strawberries, red bell peppers, or cherries).[1] Although lycopene is chemically a carotene, it has no vitamin A activity.[2] Foods that are not red may contain lycopene as well.[citation needed]
In plants, algae, and other photosynthetic organisms, lycopene is an important intermediate in the biosynthesis of many carotenoids, including beta carotene, responsible for yellow, orange or red pigmentation, photosynthesis, and photo-protection. Like all carotenoids, lycopene is a polyunsaturated hydrocarbon (an unsubstituted alkene). Structurally, it is a tetraterpene assembled from eight isoprene units, composed entirely of carbon and hydrogen, and is insoluble in water. Lycopene's eleven conjugated double bonds give it its deep red color and are responsible for its antioxidant activity. Due to its strong color and non-toxicity, lycopene is a useful food coloring (registered as E160d) and is approved for usage in the USA,[3] Australia and New Zealand (registered as 160d)[4] and the EU.[5]
Lycopene is not an essential nutrient for humans, but is commonly found in the diet, mainly from dishes prepared from tomatoes. When absorbed from the intestine, lycopene is transported in the blood by various lipoproteins and accumulates in primarily the blood, adipose, skin, liver, adrenal glands, prostate and testes, but can be found in most tissues.
Because preliminary research has shown that people who consume tomatoes have a lower cancer risk, lycopene has been considered a potential agent for prevention of some types of cancers, particularly prostate cancer.[2] However, this area of research and the relationship with prostate cancer have been deemed insufficient of evidence for health claim approval by the US Food and Drug Administration (see below under Antioxidant properties and potential health benefits).
|
|
|
|
Lycopene is a symmetrical tetraterpene assembled from 8 isoprene units. It is a member of the carotenoid family of compounds, and because it consists entirely of carbon and hydrogen, is also a carotene.[6] Isolation procedures for lycopene were first reported in 1910, and the structure of the molecule was determined by 1931. In its natural, all-trans form, the molecule is long and straight, constrained by its system of eleven conjugated double bonds. Each extension in this conjugated system reduces the energy required for electrons to transition to higher energy states, allowing the molecule to absorb visible light of progressively longer wavelengths. Lycopene absorbs all but the longest wavelengths of visible light, so it appears red.[7]
Plants and photosynthetic bacteria naturally produce all-trans lycopene, but a total of 72 geometric isomers of the molecule are sterically possible.[8] When exposed to light or heat, lycopene can undergo isomerization to any of a number of these cis-isomers, which have a bent rather than linear shape. Different isomers were shown to have different stabilities due to their molecular energy (highest stability: 5-cis ≥ all-trans ≥ 9-cis ≥ 13-cis > 15-cis > 7-cis > 11-cis: lowest).[9] In the human bloodstream, various cis-isomers constitute more than 60% of the total lycopene concentration, but the biological effects of individual isomers have not been investigated.[10]
Lycopene is insoluble in water, and can be dissolved only in organic solvents and oils. Because of its non-polarity, lycopene in food preparations will stain any sufficiently porous material, including most plastics. While a tomato stain can be fairly easily removed from fabric (provided the stain is fresh), lycopene diffuses into plastic, making it impossible to remove with hot water or detergent. If lycopene is oxidized (for example, by reacting with bleaches or acids), the double bonds between the carbon atoms will be broken; cleaving the molecule, breaking the conjugated double bond system, and eliminating the chromophore.
Carotenoids like lycopene are important pigments found in photosynthetic pigment-protein complexes in plants, photosynthetic bacteria, fungi, and algae. They are responsible for the bright colors of fruits and vegetables, perform various functions in photosynthesis, and protect photosynthetic organisms from excessive light damage. Lycopene is a key intermediate in the biosynthesis of many important carotenoids, such as beta-carotene, and xanthophylls.[11]
The unconditioned biosynthesis of lycopene in eukaryotic plants and in prokaryotic cyanobacteria is similar, as are the enzymes involved.[12] Synthesis begins with mevalonic acid, which is converted into dimethylallyl pyrophosphate. This is then condensed with three molecules of isopentenyl pyrophosphate (an isomer of dimethylallyl pyrophosphate), to give the twenty carbon geranylgeranyl pyrophosphate. Two molecules of this product are then condensed in a tail-to-tail configuration to give the forty carbon phytoene, the first committed step in carotenoid biosynthesis. Through several desaturation steps, phytoene is converted into lycopene. The two terminal isoprene groups of lycopene can be cyclized to produce beta carotene, which can then be transformed into a wide variety of xanthophylls.[13]
Dietary sources of lycopene[14] | |
---|---|
Source | mg/g wet weight |
Gac | 2,000–2,300 |
Raw tomato | 8.8–42 |
Tomato juice | 86–100 |
Tomato sauce | 63–131 |
Tomato ketchup | 124 |
Watermelon | 23–72 |
Pink grapefruit | 3.6–34 |
Pink guava | 54 |
Papaya | 20–53 |
Rosehip puree | 7.8 |
Apricot | < 0.1 |
Fruits and vegetables that are high in lycopene include gac, tomatoes, watermelon, pink grapefruit, pink guava, papaya, seabuckthorn, wolfberry (goji, a berry relative of tomato), and rosehip. Although gac (Momordica cochinchinensis Spreng) has the highest content of lycopene of any known fruit or vegetable, up to 70 times more than tomatoes for example,[15] due to gac's rarity outside its native region of southeast Asia, tomatoes and tomato-based sauces, juices, and ketchup account for more than 85% of the dietary intake of lycopene for most people.[16] The lycopene content of tomatoes depends on species and increases as the fruit ripens.[17]
Unlike other fruits and vegetables, where nutritional content such as vitamin C is diminished upon cooking, processing of tomatoes increases the concentration of bioavailable lycopene. Lycopene in tomato paste is four times more bioavailable than in fresh tomatoes. For this reason, tomato paste is a preferable source as opposed to raw tomatoes.
While most green leafy vegetables and other sources of lycopene are low in fats and oils, lycopene is insoluble in water and is tightly bound to vegetable fiber. Processed tomato products such as pasteurized tomato juice, soup, sauce, and ketchup contain the highest concentrations of bioavailable lycopene from tomato-based sources.
Cooking and crushing tomatoes (as in the canning process) and serving in oil-rich dishes (such as spaghetti sauce or pizza) greatly increases assimilation from the digestive tract into the bloodstream. Lycopene is fat-soluble, so the oil is said to help absorption. Gac is a notable exception, containing high concentrations of lycopene and also saturated and unsaturated fatty acids.[18]
Lycopene may be obtained from vegetables and fruits such as the tomato, but another source of lycopene is the fungus Blakeslea trispora. Gac is a promising commercial source of lycopene for the purposes of extraction and purification.
The cis-lycopene from some varieties of tomato is more bioavailable.[19]
Note that there are some resources which make the mistaken assumption that all red fruits contain lycopene, when in fact many are pigmented by other chemicals. An example is the blood orange, which is colored by anthocyanin, while other red colored oranges, such as the Cara cara navel, and other citrus fruit, such as pink grapefruit, are colored by lycopene.
In addition, some foods that do not appear red also contain lycopene, e.g., asparagus, which contains approximately 30μg of lycopene per 100 gram serving[20] and dried parsley and basil, which contain approximately 3.5-7 μg of lycopene per gram.[21]
Tissue | nmol/g wet weight |
---|---|
Liver | 1.28–5.72 |
Kidney | 0.15–0.62 |
Adrenal | 1.9–21.6 |
Testes | 4.34–21.4 |
Ovary | 0.25–0.28 |
Adipose | 0.2–1.3 |
Lung | 0.22–0.57 |
Colon | 0.31 |
Breast | 0.78 |
Skin | 0.42 |
After ingestion, lycopene is incorporated into lipid micelles in the small intestine. These micelles are formed from dietary fats and bile acids, and help to solubilize the hydrophobic lycopene and allow it to permeate the intestinal mucosal cells by a passive transport mechanism. Little is known about the liver metabolism of lycopene, but like other carotenoids, lycopene is incorporated into chylomicrons and released into the lymphatic system. In blood plasma, lycopene is eventually distributed into the very low and low density lipoprotein fractions.[23] Lycopene is mainly distributed to fatty tissues and organs such as the adrenal glands, liver, prostate and testes.
Lycopene is non-toxic and is commonly found in the diet, but cases of excessive carotenoid intake have been reported. In a middle-aged woman who had prolonged and excessive consumption of tomato juice, her skin and liver were colored orange-yellow and she had elevated levels of lycopene in her blood. After three weeks on a lycopene-free diet her skin color returned to normal.[23] This discoloration of the skin is known as lycopenodermia[24] and is non-toxic.
There are also cases of intolerance or allergic reaction to dietary lycopene, which may cause diarrhea, nausea, stomach pain or cramps, gas, vomiting, and loss of appetite.[25]
Given its potential properties in vivo, substantial research has been devoted to a possible correlation between lycopene consumption and general health. In 2005, the United States Food and Drug Administration allowed a limited, highly qualified claim to be used for tomatoes and tomato products which contain lycopene, as a guide that would not mislead consumers, namely: "Very limited and preliminary scientific research suggests that eating one-half to one cup of tomatoes and/or tomato sauce a week may reduce the risk of prostate cancer. FDA concludes that there is little scientific evidence supporting this claim."[26] A 2011 review found insufficient evidence to come to any conclusion about what effect lycopene might have on prostate symptoms, PSA levels or prostate cancer.[27]
According to one preliminary study, eating tomato paste for 3 months decreases sun damage by UV radiation by 30% through the action of lycopene.[28]
Wikimedia Commons has media related to Lycopene. |
|
|
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
リンク元 | 「リコペン」「リコピン」 |
.