出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2017/04/06 22:24:09」(JST)
Cell signaling (cell signalling in British English) is part of any communication process that governs basic activities of cells and coordinates all cell actions. The ability of cells to perceive and correctly respond to their microenvironment is the basis of development, tissue repair, and immunity as well as normal tissue homeostasis. Errors in signaling interactions and cellular information processing are responsible for diseases such as cancer, autoimmunity, and diabetes.[1][2][3] By understanding cell signaling, diseases may be treated more effectively and, theoretically, artificial tissues may be created.[4]
Traditional work in biology has focused on studying individual parts of cell signaling pathways. Systems biology research helps us to understand the underlying structure of cell signaling networks and how changes in these networks may affect the transmission and flow of information (signal transduction). Such networks are complex systems in their organization and may exhibit a number of emergent properties including bistability and ultrasensitivity. Analysis of cell signaling networks requires a combination of experimental and theoretical approaches including the development and analysis of simulations and modeling.[5][citation needed] Long-range allostery is often a significant component of cell signaling events.[6]
Cell signaling has been most extensively studied in the context of human diseases and signaling between cells of a single organism. However, cell signaling may also occur between the cells of two different organisms. In many mammals, early embryo cells exchange signals with cells of the uterus.[7] In the human gastrointestinal tract, bacteria exchange signals with each other and with human epithelial and immune system cells.[8] For the yeast Saccharomyces cerevisiae during mating, some cells send a peptide signal (mating factor pheromones) into their environment. The mating factor peptide may bind to a cell surface receptor on other yeast cells and induce them to prepare for mating.[9]
Cell signaling can be classified to be mechanical and biochemical based on the type of the signal. Mechanical signals are the forces exerted on the cell and the forces produced by the cell. These forces can both be sensed and responded by the cells.[10] Biochemical signals are the biochemical molecules such as proteins, lipids, ions and gases. These signals can be categorized based on the distance between signaling and responder cells. Signaling within, between, and amongst cells is subdivided into the following classifications:
Cells communicate with each other via direct contact (juxtacrine signaling), over short distances (paracrine signaling), or over large distances and/or scales (endocrine signaling).
Some cell–cell communication requires direct cell–cell contact. Some cells can form gap junctions that connect their cytoplasm to the cytoplasm of adjacent cells. In cardiac muscle, gap junctions between adjacent cells allows for action potential propagation from the cardiac pacemaker region of the heart to spread and coordinately cause contraction of the heart.
The notch signaling mechanism is an example of juxtacrine signaling (also known as contact-dependent signaling) in which two adjacent cells must make physical contact in order to communicate. This requirement for direct contact allows for very precise control of cell differentiation during embryonic development. In the worm Caenorhabditis elegans, two cells of the developing gonad each have an equal chance of terminally differentiating or becoming a uterine precursor cell that continues to divide. The choice of which cell continues to divide is controlled by competition of cell surface signals. One cell will happen to produce more of a cell surface protein that activates the Notch receptor on the adjacent cell. This activates a feedback loop or system that reduces Notch expression in the cell that will differentiate and that increases Notch on the surface of the cell that continues as a stem cell.[11]
Many cell signals are carried by molecules that are released by one cell and move to make contact with another cell. Endocrine signals are called hormones. Hormones are produced by endocrine cells and they travel through the blood to reach all parts of the body. Specificity of signaling can be controlled if only some cells can respond to a particular hormone. Paracrine signals such as retinoic acid target only cells in the vicinity of the emitting cell.[12] Neurotransmitters represent another example of a paracrine signal. Some signaling molecules can function as both a hormone and a neurotransmitter. For example, epinephrine and norepinephrine can function as hormones when released from the adrenal gland and are transported to the heart by way of the blood stream. Norepinephrine can also be produced by neurons to function as a neurotransmitter within the brain.[13] Estrogen can be released by the ovary and function as a hormone or act locally via paracrine or autocrine signaling.[14] Active species of oxygen and nitric oxide can also act as cellular messengers. This process is dubbed redox signaling.
In a multicellular organism, signaling between cells occurs either through release into the extracellular space, divided in paracrine signaling (over short distances) and endocrine signaling (over long distances), or by direct contact, known as juxtacrine signaling.[15] Autocrine signaling is a special case of paracrine signaling where the secreting cell has the ability to respond to the secreted signaling molecule.[16] Synaptic signaling is a special case of paracrine signaling (for chemical synapses) or juxtacrine signaling (for electrical synapses) between neurons and target cells. Signaling molecules interact with a target cell as a ligand to cell surface receptors, and/or by entering into the cell through its membrane or endocytosis for intracrine signaling. This generally results in the activation of second messengers, leading to various physiological effects.
A particular molecule is generally used in diverse modes of signaling, and therefore a classification by mode of signaling is not possible. At least three important classes of signaling molecules are widely recognized, although non-exhaustive and with imprecise boundaries, as such membership is non-exclusive and depends on the context:
Signaling molecules can belong to several chemical classes: lipids, phospholipids, amino acids, monoamines, proteins, glycoproteins, or gases. Signaling molecules binding surface receptors are generally large and hydrophilic (e.g. TRH, Vasopressin, Acetylcholine), while those entering the cell are generally small and hydrophobic (e.g. glucocorticoids, thyroid hormones, cholecalciferol, retinoic acid), but important exceptions to both are numerous, and a same molecule can act both via surface receptor or in an intracrine manner to different effects.[16] In intracrine signaling, once inside the cell, a signaling molecule can bind to intracellular receptors, other elements, or stimulate enzyme activity (e.g. gasses). The intracrine action of peptide hormones remains a subject of debate.[17]
Hydrogen sulfide is produced in small amounts by some cells of the human body and has a number of biological signaling functions. Only two other such gases are currently known to act as signaling molecules in the human body: nitric oxide and carbon monoxide.[18]
Cells receive information from their neighbors through a class of proteins known as receptors. Notch is a cell surface protein that functions as a receptor. Animals have a small set of genes that code for signaling proteins that interact specifically with Notch receptors and stimulate a response in cells that express Notch on their surface. Molecules that activate (or, in some cases, inhibit) receptors can be classified as hormones, neurotransmitters, cytokines, and growth factors, in general called receptor ligands. Ligand receptor interactions such as that of the Notch receptor interaction, are known to be main interactions responsible for cell signaling mechanisms and communication.[19]
As shown in Figure 2 (above; left), notch acts as a receptor for ligands that are expressed on adjacent cells. While some receptors are cell surface proteins, others are found inside cells. For example, estrogen is a hydrophobic molecule that can pass through the lipid bilayer of the membranes. As part of the endocrine system, intracellular estrogen receptors from a variety of cell types can be activated by estrogen produced in the ovaries.
A number of transmembrane receptors[20][21] for small molecules and peptide hormones[22] as well as intracellular receptors for steroid hormones exist, giving cells the ability to respond to a great number of hormonal and pharmacological stimuli. In diseases, often, proteins that interact with receptors are aberrantly activated, resulting in constitutively activated downstream signals.[23]
For several types of intercellular signaling molecules that are unable to permeate the hydrophobic cell membrane due to their hydrophilic nature, the target receptor is expressed on the membrane. When such signaling molecule activates its receptor, the signal is carried into the cell usually by means of a second messenger such as cAMP.[24][25]
This section needs expansion. You can help by adding to it. (November 2007) |
In some cases, receptor activation caused by ligand binding to a receptor is directly coupled to the cell's response to the ligand. For example, the neurotransmitter GABA can activate a cell surface receptor that is part of an ion channel. GABA binding to a GABAA receptor on a neuron opens a chloride-selective ion channel that is part of the receptor. GABAA receptor activation allows negatively charged chloride ions to move into the neuron, which inhibits the ability of the neuron to produce action potentials. However, for many cell surface receptors, ligand-receptor interactions are not directly linked to the cell's response. The activated receptor must first interact with other proteins inside the cell before the ultimate physiological effect of the ligand on the cell's behavior is produced. Often, the behavior of a chain of several interacting cell proteins is altered following receptor activation. The entire set of cell changes induced by receptor activation is called a signal transduction mechanism or pathway.[26]
In the case of Notch-mediated signaling, the signal transduction mechanism can be relatively simple. As shown in Figure 2, activation of Notch can cause the Notch protein to be altered by a protease. Part of the Notch protein is released from the cell surface membrane and takes part in gene regulation. Cell signaling research involves studying the spatial and temporal dynamics of both receptors and the components of signaling pathways that are activated by receptors in various cell types.[citation needed]
A more complex signal transduction pathway is shown in Figure 3. This pathway involves changes of protein–protein interactions inside the cell, induced by an external signal. Many growth factors bind to receptors at the cell surface and stimulate cells to progress through the cell cycle and divide. Several of these receptors are kinases that start to phosphorylate themselves and other proteins when binding to a ligand. This phosphorylation can generate a binding site for a different protein and thus induce protein–protein interaction. In Figure 3, the ligand (called epidermal growth factor (EGF)) binds to the receptor (called EGFR). This activates the receptor to phosphorylate itself. The phosphorylated receptor binds to an adaptor protein (GRB2), which couples the signal to further downstream signaling processes. For example, one of the signal transduction pathways that are activated is called the mitogen-activated protein kinase (MAPK) pathway. The signal transduction component labeled as "MAPK" in the pathway was originally called "ERK," so the pathway is called the MAPK/ERK pathway. The MAPK protein is an enzyme, a protein kinase that can attach phosphate to target proteins such as the transcription factor MYC and, thus, alter gene transcription and, ultimately, cell cycle progression. Many cellular proteins are activated downstream of the growth factor receptors (such as EGFR) that initiate this signal transduction pathway.[citation needed]
Some signaling transduction pathways respond differently, depending on the amount of signaling received by the cell. For instance, the hedgehog protein activates different genes, depending on the amount of hedgehog protein present.[citation needed]
Complex multi-component signal transduction pathways provide opportunities for feedback, signal amplification, and interactions inside one cell between multiple signals and signaling pathways.[citation needed]
Molecular signaling can occur between different organisms, whether unicellular or multicellular, the emitting organism produces the signaling molecule, secrete it into the environment, where it diffuses, and it is sensed or internalized by the receiving organism. In some cases of interspecies signaling, the emitting organism can actually be a host of the receiving organism, or vice versa.
Intraspecies signaling occurs especially in bacteria, yeast, social insects, but also many vertebrates. The signaling molecules used by multicellular organisms are often called pheromones, they can have such purposes as alerting against danger, indicating food supply, or assisting in reproduction.[27] In unicellular organisms such as bacteria, signaling can be used to 'activate' peers from a dormant state, enhance virulence, defend against bacteriophages, etc.[28] In quorum sensing, which is also found in social insects, the multiplicity of individual signals has the potentiality to create a positive feedback loop, generating coordinated response, in this context the signaling molecules are called autoinducers.[29][30][31] This signaling mechanism may have been involved in evolution from unicellular to multicellular organisms.[29][32] Bacteria also use contact-dependent signaling, notably to limit their growth.[33]
Molecular signaling can also occur between individuals of different species, this has been particularly studied in bacteria.[34][35][36] Different bacterial species can coordinate to colonize a host and participate in common quorum sensing.[37] Therapeutic strategies to disrupt this phenomenon are being investigated.[38][39] Interactions mediated through signaling molecules are also thought to occur between the gut flora and their host, as part of their commensal or symbiotic relationship.[39][40] Gram negative microbes deploy bacterial outer membrane vesicles for intra- and inter-species signaling in natural environments and at the host-pathogen interface.
Additionally, interspecies signaling occurs between multicellular organisms. In Vespa mandarinia, individuals release a scent that directs the colony to a food source.[41]
|url=
value (help). https://www.ncbi.nlm.nih.gov/books/NBK9866/. External link in |website=
(help)
Cell physiology: Cell signaling / Signal transduction
|
|||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Signaling pathways |
|
||||||||||||||||||||
Agents |
|
||||||||||||||||||||
By distance |
|
||||||||||||||||||||
Other concepts |
|
Metabolism map
|
|
---|---|
Carbon
Fixation Photo-
respiration Pentose
Phosphate Citric
Acid Cycle Glyoxylate
Cycle Urea
Cycle Fatty
Acid Fatty
Acid Beta
Oxidation Peroxisomal
Beta
Oxidation Glyco-
genolysis Glyco-
genesis Glyco-
lysis Gluconeo-
genesis Decarb-
oxylation Fermentation
Keto-
lysis Keto-
genesis feeders to
Gluconeo- Direct / C4 / CAM
Carbon Intake Light Reaction
Oxidative
Phosphorylation Amino Acid
Deamination Citrate
Shuttle Lipogenesis
Lipolysis
Steroidogenesis
MVA Pathway
MEP Pathway
Shikimate
Pathway Transcription &
Replication Translation
Proteolysis
Glycosy-
lation Sugar
Acids Double/Multiple
Sugars & Glycans Simple
Sugars Inositol-P
Amino Sugars
& Sialic Acids Nucleotide Sugars
Hexose-P
Triose-P
Glycerol
P-glycerates
Pentose-P
Tetrose-P
Propionyl
-CoA Succinate
Acetyl
-CoA Pentose-P
P-glycerates
Glyoxylate
Photosystems
Pyruvate
Lactate
Acetyl
-CoA Citrate
Oxalo-
acetate Malate
Succinyl
-CoA α-Keto-
glutarate Ketone
Bodies Respiratory
Chain Serine Group
Alanine
Branched-chain
Amino Acids Aspartate
Group Homoserine
Group Glutamate
Group Arginine
Creatine
& Polyamines Ketogenic &
Glucogenic Amino Acids
Shikimate
Aromatic Amino
Acids & Histidine Ascorbate
(Vitamin C) δ-ALA
Bile
Pigments Hemes
Cobalamins (Vitamin B12)
Various
Vitamin B's Calciferols
(Vitamin D) Retinoids
(Vitamin A) Quinones (Vitamin K)
& Carotenoids (Vitamin E) Cofactors
Vitamins
& Minerals Antioxidants
PRPP
Nucleotides
Nucleic
Acids Proteins
Glycoproteins
& Proteoglycans Chlorophylls
MEP
MVA
Acetyl
-CoA Polyketides
Terpenoid
Backbones Terpenoids
& Carotenoids (Vitamin A) Cholesterol
Bile Acids
Glycero-
phospholipids Glycerolipids
Acyl-CoA
Fatty
Acids Glyco-
sphingolipids Sphingolipids
Waxes
Polyunsaturated
Fatty Acids Neurotransmitters
& Thyroid Hormones Steroids
Endo-
cannabinoids Eicosanoids
|
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
リンク元 | 「細胞内シグナリング」「細胞内情報伝達」 |
拡張検索 | 「intracellular signaling molecule」「intracellular signaling protein」「intracellular signaling system」 |
関連記事 | 「signaling」「intracellular」 |
.