ジイソプロピルアミン
Wikipedia preview
出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2016/12/11 15:58:17」(JST)
[Wiki en表示]
Diisopropylamine
|
Names |
Preferred IUPAC name
N-(Propan-2-yl)propan-2-amine
|
Other names
Di(propan-2-yl)amine
N-Isopropylpropan-2-amine
(Diisopropyl)amine
(The name diisopropylamine is deprecated.)
|
Identifiers |
CAS Number
|
108-18-9 Y |
3D model (Jmol) |
Interactive image |
Abbreviations |
DIPA |
Beilstein Reference
|
605284 |
ChemSpider |
7624 Y |
ECHA InfoCard |
100.003.235 |
EC Number |
203-558-5 |
PubChem |
7912 |
RTECS number |
IM4025000 |
UNII |
BR9JLI40NO Y |
UN number |
1158 |
InChI
-
InChI=1S/C6H15N/c1-5(2)7-6(3)4/h5-7H,1-4H3 Y
Key: UAOMVDZJSHZZME-UHFFFAOYSA-N Y
|
|
Properties |
Chemical formula
|
C6H15N |
Molar mass |
101.19 g·mol−1 |
Appearance |
Colorless liquid |
Odor |
Fishy, ammoniacal |
Density |
0.722 g mL−1 |
Melting point |
−61.00 °C; −77.80 °F; 212.15 K |
Boiling point |
83 to 85 °C; 181 to 185 °F; 356 to 358 K |
Solubility in water
|
miscible[1] |
Vapor pressure |
6.7 kPa (at 20 °C) |
Acidity (pKa) |
11.07 (in water) (conjugate acid) |
Basicity (pKb) |
3.43[2] |
Refractive index (nD)
|
1.392–1.393 |
Thermochemistry |
Std enthalpy of
formation (ΔfHo298)
|
−173.6 to −168.4 kJ mol−1 |
Std enthalpy of
combustion (ΔcHo298)
|
−4.3363 to −4.3313 MJ mol−1 |
Hazards |
GHS pictograms |
|
GHS signal word |
DANGER |
GHS hazard statements
|
H225, H302, H314, H332 |
GHS precautionary statements
|
P210, P280, P305+351+338, P310 |
EU classification (DSD)
|
F C |
R-phrases |
R11, R20/22, R34 |
S-phrases |
(S1/2), S16, S26, S36/37/39 |
NFPA 704 |
|
Flash point |
−17 °C (1 °F; 256 K) |
Autoignition
temperature
|
315 °C (599 °F; 588 K) |
Explosive limits |
1.1–7.1%[1] |
Lethal dose or concentration (LD, LC): |
LD50 (median dose)
|
- 770 mg kg−1 (oral, rat)
- >10 g kg−1 (dermal, rabbit)
|
LC50 (median concentration)
|
1140 ppm (rat, 2 hr)
1000 ppm (mouse, 2 hr)[3] |
LCLo (lowest published)
|
2207 ppm (rabbit, 2.5 hr)
2207 ppm (guinea pig, 80 min)
2207 ppm (cat, 72 min)[3] |
US health exposure limits (NIOSH): |
PEL (Permissible)
|
TWA 5 ppm (20 mg/m3) [skin][1] |
REL (Recommended)
|
TWA 5 ppm (20 mg/m3) [skin][1] |
IDLH (Immediate danger)
|
200 ppm[1] |
Related compounds |
Related amines
|
- Dimethylamine
- Diethylamine
|
Related compounds
|
- Triisopropylamine
- N,N-Diisopropylethylamine
|
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
N verify (what is YN ?) |
Infobox references |
|
|
Diisopropylamine is a secondary amine with the chemical formula (CH3)2HC-NH-CH(CH3)2. It is best known as its lithium derivative of its conjugate base, lithium diisopropylamide, known as "LDA". LDA is a strong, non-nucleophilic base.
Diisopropylamine can be dried by distillation from potassium hydroxide (KOH) or drying over sodium wire.[4]
Reactions and uses
Diisopropylamine is primarily used as a precursor to two herbicides, diallate and triallate, as well as certain sulfenamides used in the vulcanization of rubber.[5] It is also used to prepare N,N-Diisopropylethylamine (Hünig's base) by alkylation with diethyl sulfate.[6]
The bromide salt of diisopropylamine, diisopropylammonium bromide, is an organic molecular solid whose crystals are ferroelectric at room temperature.[7] This renders it a possible more biospherically inert alternative to barium titanate.
Preparation
Diisopropylamine is commercially available. It may be prepared by the reductive amination of acetone with ammonia using a modified copper oxide, generally copper chromite, as a catalyst:[8][9]
- NH
3 + 2(CH
3)
2CO + 2H
2 → C
6H
15N + 2H
2O
References
- ^ a b c d e "NIOSH Pocket Guide to Chemical Hazards #0217". National Institute for Occupational Safety and Health (NIOSH).
- ^ "DIISOPROPYLAMINE". pub chem. NIH. Retrieved 20 October 2015.
- ^ a b "Diisopropylamine". Immediately Dangerous to Life and Health. National Institute for Occupational Safety and Health (NIOSH).
- ^ Armarego, W. L. F. and Perrin, D. D. Purification of Laboratory Chemicals 4th Ed. pg 186, Butterworth and Heinemann: Boston, 1996.
- ^ Karsten Eller, Erhard Henkes, Roland Rossbacher, Hartmut Höke "Amines, Aliphatic" Ullmann's Encyclopedia of Industrial Chemistry, 2000, Wiley-VCH, Weinheim. doi:10.1002/14356007.a02_001
- ^ Hünig, S.; Kiessel, M. (1958). "Spezifische Protonenacceptoren als Hilfsbasen bei Alkylierungs- und Dehydrohalogenierungsreaktionen". Chemische Berichte. 91 (2): 380–392. doi:10.1002/cber.19580910223.
- ^ "An organic alternative to oxides? Organic ferroelectric molecule shows promise for memory chips, sensors". phys.org. Jan 24, 2013.
- ^ Karl Löffler. "Über eine neue Bildungsweise primärer und sekundärer Amine aus Ketonen". Berichte. 43 (2): 2031–2035. doi:10.1002/cber.191004302145.
- ^ US 2686811, Willard Bull, "One-step process for preparing diisopropylamine"
UpToDate Contents
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
English Journal
- Aza-[2,3]-Wittig Sigmatropic Rearrangement of Allylic Tertiary Amines: A Successful Example with High Chirality Transfer.
- Drouillat B1, Wright K1, Quinodoz P1, Marrot J1, Couty F1.
- The Journal of organic chemistry.J Org Chem.2015 Jul 2;80(13):6936-40. doi: 10.1021/acs.joc.5b01230. Epub 2015 Jun 15.
- We report herein a successful example of an aza-[2,3]-Wittig rearrangement in an allylic tertiary N,N-dibenzyl amine derived from (S)-alaninol or (S)-isoleucinol. This reaction occurs upon metalation at the benzylic position with a mixture of butyllithium/diisopropylamine/potassium t-butoxide and pr
- PMID 26036310
- Straightforward synthesis of 5-bromopenta-2,4-diynenitrile and its reactivity towards terminal alkynes: a direct access to diene and benzofulvene scaffolds.
- Kerisit N1, Toupet L, Larini P, Perrin L, Guillemin JC, Trolez Y.
- Chemistry (Weinheim an der Bergstrasse, Germany).Chemistry.2015 Apr 13;21(16):6042-7. doi: 10.1002/chem.201500633. Epub 2015 Mar 11.
- The high-yielding synthesis of 5-bromopenta-2,4-diynenitrile (BrC5 N) was achieved for the first time. Its reactivity with triisopropylsilylacetylene and triisopropylsilylbutadiyne in the presence of copper and palladium as co-catalysts and diisopropylamine was evaluated. It revealed an unprecedente
- PMID 25761250
- Metabolism targeting therapy of dichloroacetate-loaded electrospun mats on colorectal cancer.
- Liu D1, Wang F, Yue J, Jing X, Huang Y.
- Drug delivery.Drug Deliv.2015 Jan;22(1):136-43. doi: 10.3109/10717544.2013.870258. Epub 2013 Dec 20.
- Differences in energy metabolism between tumor cells and normal cells offer an attractive avenue of research into drug targets for tumor therapy. The use of a metabolic modulator (sodium dichloroacetate, DCA), administered in situ, to reverse the "Warburg effect" of tumor cells has been demonstrated
- PMID 24359441
Japanese Journal
- Effects of diisopropylamine dichloroacetate on proliferation and differentiation of normal human keratinocytes in vitro
- Amino Acids and Peptides. XXX. Preparation of Arg-Gly-Asp (RGD) Hybrids with Poly(Ethylene Glycol) Analogs and Their Antimetastatic Effect
- Maeda Mitsuko,Izuno Yasuhiro,Kawasaki Koichi [他],KANEDA Yoshihisa,MU Yu,TSUTSUMI Yasuo,NAKAGAWA Shinsaku,MAYUMI Tadanori
- Chemical & pharmaceutical bulletin 45(11), 1788-1792, 1997-11-15
- … Thus it can be said that the inhibitory effect of RGD was potentiated by hybrid formation with poly(oxyethylene)diisopropylamine. …
- NAID 110003616444
Related Links
- 反応プロフィール Diisopropylamine can react violently with oxidizing agents and strong acids. Readily eutralizes acids in exothermic reactions to form salts plus water. May be incompatible with isocyanates, halogenated organics ...
- [Lithium Diisopropylamide] [4111-54-0] | 価格や在庫、物性値などの詳細情報ページです。 ... 別名 (英名) LDA (ca. 20% in Tetrahydrofuran/Ethylbenzene/Heptane, ca. 1.5mol/L) 和名 リチウムジイソプロピルアミド (約20%テトラヒドロフラン ...
Related Pictures
★リンクテーブル★
[★]
ジクロロ酢酸ジイソプロピルアミン
[★]
ジイソプロピルアミン中毒