出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2014/08/27 00:16:15」(JST)
The X chromosome is one of the two sex-determining chromosomes (allosomes) in many animal species, including mammals (the other is the Y chromosome), and is found in both males and females. It is a part of the XY sex-determination system and X0 sex-determination system. The X chromosome was named for its unique properties by early researchers, which resulted in the naming of its counterpart Y chromosome, for the next letter in the alphabet, after it was discovered later.[1]
The X chromosome in humans spans more than 153 million base pairs (the building material of DNA). It represents about 2000 out of 20,000 - 25,000 genes. Each person normally has one pair of sex chromosomes in each cell. Females have two X chromosomes, whereas males have one X and one Y chromosome. Both males and females retain one of their mother's X chromosomes, and females retain their second X chromosome from their father. Since the father retains his X chromosome from his mother, a human female has one X chromosome from her paternal grandmother (father's side), and one X chromosome from her mother.
Identifying genes on each chromosome is an active area of genetic research. Due to the fact that researchers use different approaches to predict the number of genes on each chromosome, the estimated number of genes varies. The X chromosome contains about 2000[2] genes compared to the Y chromosome containing 78[3] genes, out of the estimated 20,000 to 25,000 total genes in the human genome. Genetic disorders that are due to mutations in genes on the X chromosome are described as X linked.
The X chromosome carries a couple of thousand genes but few, if any, of these have anything to do directly with sex determination. Early in embryonic development in females, one of the two X chromosomes is randomly and permanently inactivated in nearly all somatic cells (cells other than egg and sperm cells). This phenomenon is called X-inactivation or Lyonization, and creates a Barr body. If X-inactivation in the somatic cell meant a complete de-functionalizing of one of the X-chromosomes, it would ensure that females, like males, had only one functional copy of the X chromosome in each somatic cell. This was previously assumed to be the case. However, recent research suggests that the Barr body may be more biologically active than was previously supposed.[4]
It is theorized by Ross et al. 2005 and Ohno 1967 that the X chromosome is at least partially derived from the autosomal (non-sex-related) genome of other mammals, evidenced from interspecies genomic sequence alignments.
The X chromosome is notably larger and has a more active euchromatin region than its Y chromosome counterpart. Further comparison of the X and Y reveal regions of homology between the two. However, the corresponding region in the Y appears far shorter and lacks regions that are conserved in the X throughout primate species, implying a genetic degeneration for Y in that region. Because males have only one X chromosome, they are more likely to have an X chromosome-related disease.
It is estimated that about 10% of the genes encoded by the X chromosome are associated with a family of "CT" genes, so named because they encode for markers found in both tumor cells (in Cancer patients) as well as in the human testis (in healthy patients).[5]
Klinefelter syndrome:
Triple X syndrome (also called 47,XXX or trisomy X):
Turner syndrome:
XX male syndrome is a rare disorder, where the SRY region of the Y chromosome has recombined to be located on one of the X chromosomes. As a result, the XX combination after fertilization has the same effect as a XY combination, resulting in a male. However, the other genes of the X chromosome cause feminization as well.
X-linked endothelial corneal dystrophy is an extremely rare disease of cornea associated with Xq25 region. Lisch epithelial corneal dystrophy is associated with Xp22.3.
Megalocornea 1 is associated with Xq21.3-q22
It was first noted that the X chromosome was special in 1890 by Hermann Henking in Leipzig. Henking was studying the testicles of Pyrrhocoris and noticed that one chromosome did not take part in meiosis. Chromosomes are so named because of their ability to take up staining. Although the X chromosome could be stained just as well as the others, Henking was unsure whether it was a different class of object and consequently named it X element,[10] which later became X chromosome after it was established that it was indeed a chromosome.[11]
The idea that the X chromosome was named after its similarity to the letter "X" is mistaken. All chromosomes normally appear as an amorphous blob under the microscope and only take on a well defined shape during mitosis. This shape is vaguely X-shaped for all chromosomes. It is entirely coincidental that the Y chromosome, during mitosis, has two very short branches which can look merged under the microscope and appear as the descender of a Y-shape.[12]
It was first suggested that the X chromosome was involved in sex determination by Clarence Erwin McClung in 1901 after comparing his work on locusts with Henking's and others. McClung noted that only half the sperm received an X chromosome. He called this chromosome an accessory chromosome and insisted, correctly, that it was a proper chromosome, and theorized, incorrectly, that it was the male determining chromosome.[10]
|url=
(help)
|
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
リンク元 | 「X染色体」 |
関連記事 | 「X」 |
.