- 関
- synaptobrevin 3、vesicle-associated membrane protein 3
Wikipedia preview
出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2013/09/11 18:55:29」(JST)
[Wiki en表示]
Vesicle-associated membrane protein 3 |
PDB rendering based on 1kil. |
Available structures |
PDB |
Ortholog search: PDBe, RCSB |
List of PDB id codes |
1kil, 1n7s
|
|
|
Identifiers |
Symbols |
VAMP3; CEB |
External IDs |
OMIM: 603657 MGI: 1321389 HomoloGene: 3511 GeneCards: VAMP3 Gene |
Gene Ontology |
Molecular function |
• protein binding
• syntaxin-1 binding
|
Cellular component |
• plasma membrane
• integral to membrane
• apical plasma membrane
• cell junction
• clathrin-coated vesicle
• secretory granule
• clathrin-coated vesicle membrane
• SNARE complex
• neuron projection
• synapse
• recycling endosome
|
Biological process |
• positive regulation of receptor recycling
• protein complex assembly
• exocytosis
• vesicle docking involved in exocytosis
• cellular membrane fusion
• vesicle-mediated transport
• calcium ion-dependent exocytosis
• substrate adhesion-dependent cell spreading
• retrograde transport, endosome to Golgi
• Golgi to plasma membrane protein transport
|
Sources: Amigo / QuickGO |
|
RNA expression pattern |
|
|
|
More reference expression data |
Orthologs |
Species |
Human |
Mouse |
|
Entrez |
9341 |
22319 |
|
Ensembl |
ENSG00000049245 |
ENSMUSG00000028955 |
|
UniProt |
Q15836 |
P63024 |
|
RefSeq (mRNA) |
NM_004781 |
NM_009498 |
|
RefSeq (protein) |
NP_004772 |
NP_033524 |
|
Location (UCSC) |
Chr 1:
7.83 – 7.84 Mb |
Chr 4:
151.05 – 151.06 Mb |
|
PubMed search |
[1] |
[2] |
|
|
Vesicle-associated membrane protein 3 is a protein that in humans is encoded by the VAMP3 gene.[1][2]
Synaptobrevins/VAMPs, syntaxins, and the 25-kD synaptosomal-associated protein are the main components of a protein complex involved in the docking and/or fusion of synaptic vesicles with the presynaptic membrane. This gene is a member of the vesicle-associated membrane protein (VAMP)/synaptobrevin family. Because of its high homology to other known VAMPs, its broad tissue distribution, and its subcellular localization, the protein encoded by this gene was shown to be the human equivalent of the rodent cellubrevin. In platelets the protein resides on a compartment that is not mobilized to the plasma membrane on calcium or thrombin stimulation.[2]
Interactions[edit source | edit]
VAMP3 has been shown to interact with
- BCAP31,[3]
- BVES,[4]
- SNAP23,[5][6][7]
- STX4,[5][6][8][9]
- STX6.[10]
References[edit source | edit]
- ^ Bernstein AM, Whiteheart SW (Apr 1999). "Identification of a cellubrevin/vesicle associated membrane protein 3 homologue in human platelets". Blood 93 (2): 571–9. PMID 9885218.
- ^ a b "Entrez Gene: VAMP3 vesicle-associated membrane protein 3 (cellubrevin)".
- ^ Annaert WG, Becker B, Kistner U, Reth M, Jahn R (December 1997). "Export of cellubrevin from the endoplasmic reticulum is controlled by BAP31". J. Cell Biol. 139 (6): 1397–410. doi:10.1083/jcb.139.6.1397. PMC 2132629. PMID 9396746.
- ^ Hager HA, Roberts RJ, Cross EE, Proux-Gillardeaux V, Bader DM (February 2010). "Identification of a novel Bves function: regulation of vesicular transport". EMBO J. 29 (3): 532–45. doi:10.1038/emboj.2009.379. PMC 2830705. PMID 20057356.
- ^ a b Imai A, Nashida T, Yoshie S, Shimomura H (August 2003). "Intracellular localisation of SNARE proteins in rat parotid acinar cells: SNARE complexes on the apical plasma membrane". Arch. Oral Biol. 48 (8): 597–604. doi:10.1016/S0003-9969(03)00116-X. PMID 12828989.
- ^ a b Paumet F, Le Mao J, Martin S, Galli T, David B, Blank U, Roa M (June 2000). "Soluble NSF attachment protein receptors (SNAREs) in RBL-2H3 mast cells: functional role of syntaxin 4 in exocytosis and identification of a vesicle-associated membrane protein 8-containing secretory compartment". J. Immunol. 164 (11): 5850–7. PMID 10820264.
- ^ Freedman SJ, Song HK, Xu Y, Sun ZY, Eck MJ (April 2003). "Homotetrameric structure of the SNAP-23 N-terminal coiled-coil domain". J. Biol. Chem. 278 (15): 13462–7. doi:10.1074/jbc.M210483200. PMID 12556468.
- ^ Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M (October 2005). "Towards a proteome-scale map of the human protein-protein interaction network". Nature 437 (7062): 1173–8. doi:10.1038/nature04209. PMID 16189514.
- ^ Polgár J, Chung SH, Reed GL (August 2002). "Vesicle-associated membrane protein 3 (VAMP-3) and VAMP-8 are present in human platelets and are required for granule secretion". Blood 100 (3): 1081–3. doi:10.1182/blood.V100.3.1081. PMID 12130530.
- ^ Mallard F, Tang BL, Galli T, Tenza D, Saint-Pol A, Yue X, Antony C, Hong W, Goud B, Johannes L (February 2002). "Early/recycling endosomes-to-TGN transport involves two SNARE complexes and a Rab6 isoform". J. Cell Biol. 156 (4): 653–64. doi:10.1083/jcb.200110081. PMC 2174079. PMID 11839770.
Further reading[edit source | edit]
- Timmers KI, Clark AE, Omatsu-Kanbe M, et al. (1997). "Identification of SNAP receptors in rat adipose cell membrane fractions and in SNARE complexes co-immunoprecipitated with epitope-tagged N-ethylmaleimide-sensitive fusion protein.". Biochem. J. 320. ( Pt 2): 429–36. PMC 1217948. PMID 8973549.
- Annaert WG, Becker B, Kistner U, et al. (1998). "Export of cellubrevin from the endoplasmic reticulum is controlled by BAP31.". J. Cell Biol. 139 (6): 1397–410. doi:10.1083/jcb.139.6.1397. PMC 2132629. PMID 9396746.
- Galli T, Zahraoui A, Vaidyanathan VV, et al. (1998). "A novel tetanus neurotoxin-insensitive vesicle-associated membrane protein in SNARE complexes of the apical plasma membrane of epithelial cells.". Mol. Biol. Cell 9 (6): 1437–48. PMC 25366. PMID 9614185.
- Riento K, Galli T, Jansson S, et al. (1999). "Interaction of Munc-18-2 with syntaxin 3 controls the association of apical SNAREs in epithelial cells.". J. Cell. Sci. 111. ( Pt 17): 2681–8. PMID 9701566.
- Prekeris R, Klumperman J, Chen YA, Scheller RH (1998). "Syntaxin 13 mediates cycling of plasma membrane proteins via tubulovesicular recycling endosomes.". J. Cell Biol. 143 (4): 957–71. doi:10.1083/jcb.143.4.957. PMC 2132958. PMID 9817754.
- Paumet F, Le Mao J, Martin S, et al. (2000). "Soluble NSF attachment protein receptors (SNAREs) in RBL-2H3 mast cells: functional role of syntaxin 4 in exocytosis and identification of a vesicle-associated membrane protein 8-containing secretory compartment.". J. Immunol. 164 (11): 5850–7. PMID 10820264.
- Antonin W, Holroyd C, Fasshauer D, et al. (2001). "A SNARE complex mediating fusion of late endosomes defines conserved properties of SNARE structure and function.". EMBO J. 19 (23): 6453–64. doi:10.1093/emboj/19.23.6453. PMC 305878. PMID 11101518.
- Wade N, Bryant NJ, Connolly LM, et al. (2001). "Syntaxin 7 complexes with mouse Vps10p tail interactor 1b, syntaxin 6, vesicle-associated membrane protein (VAMP)8, and VAMP7 in b16 melanoma cells.". J. Biol. Chem. 276 (23): 19820–7. doi:10.1074/jbc.M010838200. PMID 11278762.
- Antonin W, Fasshauer D, Becker S, et al. (2002). "Crystal structure of the endosomal SNARE complex reveals common structural principles of all SNAREs.". Nat. Struct. Biol. 9 (2): 107–11. doi:10.1038/nsb746. PMID 11786915.
- Poschet JF, Skidmore J, Boucher JC, et al. (2002). "Hyperacidification of cellubrevin endocytic compartments and defective endosomal recycling in cystic fibrosis respiratory epithelial cells.". J. Biol. Chem. 277 (16): 13959–65. doi:10.1074/jbc.M105441200. PMID 11809765.
- Mallard F, Tang BL, Galli T, et al. (2002). "Early/recycling endosomes-to-TGN transport involves two SNARE complexes and a Rab6 isoform.". J. Cell Biol. 156 (4): 653–64. doi:10.1083/jcb.200110081. PMC 2174079. PMID 11839770.
- Polgár J, Chung SH, Reed GL (2002). "Vesicle-associated membrane protein 3 (VAMP-3) and VAMP-8 are present in human platelets and are required for granule secretion.". Blood 100 (3): 1081–3. doi:10.1182/blood.V100.3.1081. PMID 12130530.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi:10.1073/pnas.242603899. PMC 139241. PMID 12477932.
- Gevaert K, Goethals M, Martens L, et al. (2004). "Exploring proteomes and analyzing protein processing by mass spectrometric identification of sorted N-terminal peptides.". Nat. Biotechnol. 21 (5): 566–9. doi:10.1038/nbt810. PMID 12665801.
- Imai A, Nashida T, Yoshie S, Shimomura H (2003). "Intracellular localisation of SNARE proteins in rat parotid acinar cells: SNARE complexes on the apical plasma membrane.". Arch. Oral Biol. 48 (8): 597–604. doi:10.1016/S0003-9969(03)00116-X. PMID 12828989.
- Gerhard DS, Wagner L, Feingold EA, et al. (2004). "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).". Genome Res. 14 (10B): 2121–7. doi:10.1101/gr.2596504. PMC 528928. PMID 15489334.
- Dai J, Li J, Bos E, et al. (2004). "ACAP1 promotes endocytic recycling by recognizing recycling sorting signals.". Dev. Cell 7 (5): 771–6. doi:10.1016/j.devcel.2004.10.002. PMID 15525538.
- Boal F, Zhang H, Tessier C, et al. (2005). "The variable C-terminus of cysteine string proteins modulates exocytosis and protein-protein interactions.". Biochemistry 43 (51): 16212–23. doi:10.1021/bi048612. PMID 15610015.
- Rual JF, Venkatesan K, Hao T, et al. (2005). "Towards a proteome-scale map of the human protein-protein interaction network.". Nature 437 (7062): 1173–8. doi:10.1038/nature04209. PMID 16189514.
PDB gallery
|
|
|
1kil: Three-dimensional structure of the complexin/SNARE complex
|
|
1n7s: High Resolution Structure of a Truncated Neuronal SNARE Complex
|
|
|
|
Membrane protein: vesicular transport proteins (TC 1F)
|
|
Synaptic vesicle |
SNARE
|
Q-SNARE
|
SNAP25 · SNAP29
Syntaxin (STX1A, STX1B, STX2, STX3, STX4, STX5, STX6, STX7, STX8, STX10, STX11, STX12, STX16, STX17, STX18, STX19)
Munc-18: STXBP1 · STXBP2 · STXBP3 · STXBP4 · STXBP5 · STXBP6
|
|
R-SNARE
|
Synaptobrevin/VAMP: VAMP1 · VAMP2 · VAMP3
|
|
|
Synaptotagmin
|
SYT1 · SYT2 · SYT3 · SYT4 · SYT5 · SYT6 · SYT7 · SYT8 · SYT9 · SYT10 · SYT11 · SYT12 · SYT13 · SYT14 · SYT15 · SYT16 · SYT17
|
|
Other
|
Synaptophysin · Synapsin
Small GTPase: RAB3A
|
|
|
COPI |
Coatomer (COPA, COPB1, COPB2, COPE, COPG, COPG2, COPZ1, COPZ2)
Archain
Small GTPase: ARF
|
|
COPII |
Vesicle formation: SEC23A
Small GTPase: SAR1A
|
|
RME/Clathrin |
CLTA · CLTB · CLTC
|
|
Caveolae |
Caveolin (CAV1 · CAV2 · CAV3)
|
|
Other/ungrouped |
Vesicle formation
|
Adaptor protein complex 1: AP1AR · AP1B1 · AP1G1 · AP1G2 · AP1M1 · AP1M2 · AP1S1 · AP1S2 · AP1S3
Adaptor protein complex 2: AP2A1 · AP2A2 · AP2B1 · AP2M1 · AP2S1
Adaptor protein complex 3: AP3B1 · AP3B2 · AP3D1 · AP3M1 · AP3M2 · AP3S1 · AP3S2
Adaptor protein complex 4: AP4B1 · AP4E1 · AP4M1 · AP4S1
LMAN1
LYST
BLOC-1: DTNBP1 · BLOC153
BLOC-2: HPS3 · HPS5 · HPS6
BLOC-3: HPS1 · HPS4
Coats: Retromer · TIP47
|
|
Small GTPase
|
Dynamin (DNM1, DNM2, DNM3)
|
|
Other
|
EHD protein family: EHD1 · EHD2 · EHD3 · EHD4
Sorting nexins
vacuolar protein sorting: VPS13B · VPS33B
SYNRG
|
|
|
see also vesicular transport protein disorders
B memb: cead, trns (1A, 1C, 1F, 2A, 3A1, 3A2-3, 3D), othr
|
|
English Journal
- ATG16L1 meets ATG9 in recycling endosomes: Additional roles for the plasma membrane and endocytosis in autophagosome biogenesis.
- Puri C, Renna M, Bento CF, Moreau K, Rubinsztein DC.Author information Department of Medical Genetics; Cambridge Institute for Medical Research; University of Cambridge; Cambridge UK.AbstractAutophagosomes are formed by double-membraned structures, which engulf portions of cytoplasm. Autophagosomes ultimately fuse with lysosomes, where their contents are degraded. The origin of the autophagosome membrane may involve different sources, such as mitochondria, Golgi, endoplasmic reticulum, plasma membrane, and recycling endosomes. We recently observed that ATG9 localizes on the plasma membrane in clathrin-coated structures and is internalized following a classical endocytic pathway through early and then recycling endosomes. By contrast, ATG16L1 is also internalized by clathrin-mediated endocytosis but via different clathrin-coated pits, and appears to follow a different route to the recycling endosomes. The R-SNARE VAMP3 mediates the coalescence of the 2 different pools of vesicles (containing ATG16L1 or ATG9) in recycling endosomes. The heterotypic fusion between ATG16L1- and ATG9-containing vesicles strongly correlates with subsequent autophagosome formation. Thus, ATG9 and ATG16L1 both traffic from the plasma membrane to autophagic precursor structures and provide 2 routes from the plasma membrane to autophagosomes.
- Autophagy.Autophagy.2014 Jan 1;10(1):182-184. Epub 2013 Nov 19.
- Autophagosomes are formed by double-membraned structures, which engulf portions of cytoplasm. Autophagosomes ultimately fuse with lysosomes, where their contents are degraded. The origin of the autophagosome membrane may involve different sources, such as mitochondria, Golgi, endoplasmic reticulum,
- PMID 24257061
- Vesicular transport system in myotubes: ultrastructural study and signposting with vesicle-associated membrane proteins.
- Tajika Y, Takahashi M, Khairani AF, Ueno H, Murakami T, Yorifuji H.Author information Department of Anatomy, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan, ytajika@gunma-u.ac.jp.AbstractMyofibers have characteristic membrane compartments in their cytoplasm and sarcolemma, such as the sarcoplasmic reticulum, T-tubules, neuromuscular junction, and myotendinous junction. Little is known about the vesicular transport that is believed to mediate the development of these membrane compartments. We determined the locations of organelles in differentiating myotubes. Electron microscopic observation of a whole myotube revealed the arrangement of Golgi apparatus, rough endoplasmic reticulum, autolysosomes, mitochondria, and smooth endoplasmic reticulum from the perinuclear region toward the end of myotubes and the existence of a large number of vesicles near the ends of myotubes. Vesicles in myotubes were further characterized using immunofluorescence microscopy to analyze expression and localization of vesicle-associated membrane proteins (VAMPs). VAMPs are a family of seven proteins that regulate post-Golgi vesicular transport via the fusion of vesicles to the target membranes. Myotubes express five VAMPs in total. Vesicles with VAMP2, VAMP3, or VAMP5 were found near the ends of the myotubes. Some of these vesicles are also positive for caveolin-3, suggesting their participation in the development of T-tubules. Our morphological analyses revealed the characteristic arrangement of organelles in myotubes and the existence of transport vesicles near the ends of the myotubes.
- Histochemistry and cell biology.Histochem Cell Biol.2013 Nov 22. [Epub ahead of print]
- Myofibers have characteristic membrane compartments in their cytoplasm and sarcolemma, such as the sarcoplasmic reticulum, T-tubules, neuromuscular junction, and myotendinous junction. Little is known about the vesicular transport that is believed to mediate the development of these membrane compart
- PMID 24263617
- SNAP-23 and VAMP-3 contribute to the release of IL-6 and TNFα from a human synovial sarcoma cell line.
- Boddul SV, Meng J, Dolly JO, Wang J.Author information International Centre for Neurotherapeutics, Dublin City University, Ireland.AbstractFibroblast-like synoviocytes are important mediators of inflammatory joint damage in arthritis through the release of cytokines, but it is unknown whether their exocytosis from these particular cells is SNARE-dependent. Here, the complement of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) in human synovial sarcoma cells (SW982) was examined with respect to the secretion of interleukin-6 (IL-6) and tumour necrosis factor α (TNFα), before and after knockdown of a synaptosome-associated protein of molecular mass 23 kDa (SNAP-23) or the vesicle-associated membrane protein 3 (VAMP-3). Wild-type SW982 cells expressed SNAP-23, VAMP-3, syntaxin isoforms 2-4 and synaptic vesicle protein 2C (SV2C). These cells showed Ca2+ -dependent secretion of IL-6 and TNFα when stimulated by interleukin-1β (IL-1β) or in combination with K+ depolarization. Specific knockdown of SNAP-23 or VAMP-3 decreased the exocytosis of IL-6 and TNFα; the reduced expression of SNAP-23 caused accumulation of SV2 in the peri-nuclear area. A monoclonal antibody specific for VAMP-3 precipitated SNAP-23 and syntaxin-2 (and syntaxin-3 to a lesser extent). The formation of SDS-resistant complexes by SNAP-23 and VAMP-3 was reduced upon knockdown of SNAP-23. Although the syntaxin isoforms 2, 3 and 4 are expressed in SW982 cells, knockdown of each did not affect the release of cytokines. Collectively, these results show that SNAP-23 and VAMP-3 participate in IL-1β-induced Ca2+ -dependent release of IL-6 and TNFα from SW982 cells.
- The FEBS journal.FEBS J.2013 Nov 20. doi: 10.1111/febs.12620. [Epub ahead of print]
- Fibroblast-like synoviocytes are important mediators of inflammatory joint damage in arthritis through the release of cytokines, but it is unknown whether their exocytosis from these particular cells is SNARE-dependent. Here, the complement of soluble N-ethylmaleimide-sensitive factor attachment pro
- PMID 24373201
Related Links
- you tubeでEuler Bretasと検索すればVamp3 の真のポテンシャルを確認できます。 レビューID:46675 参考になった人数:2人(3人中) 参考になりましたか? 2012/03/25 レビューを見て 買いましたが><? 投稿者名:ギターおたく 【北海道】 ...
- Complete information for VAMP3 gene (protein-coding), vesicle-associated membrane protein 3, including: function, proteins, disorders, pathways, orthologs, and expression. GeneCards - The Human Gene Compendium ... Summaries
Related Pictures
★リンクテーブル★
[★]
- 英
- vesicle-associated membrane protein 3、VAMP3
- 関
- シナプトブレビン3
[★]
シナプトブレビン3
- 関
- VAMP3、vesicle-associated membrane protein 3
[★]
小胞結合膜タンパク質3
- 関
- synaptobrevin 3、VAMP3