- 日
- シュードモナス・プチダ
- 関
- プチダ菌
WordNet
- type genus of the family Pseudomonodaceae (同)genus Pseudomonas
Wikipedia preview
出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2013/12/24 13:27:58」(JST)
[Wiki en表示]
Pseudomonas putida |
Scientific classification |
Kingdom: |
Bacteria |
Phylum: |
Proteobacteria |
Class: |
Gamma Proteobacteria |
Order: |
Pseudomonadales |
Family: |
Pseudomonadaceae |
Genus: |
Pseudomonas |
Species: |
P. putida |
Binomial name |
Pseudomonas putida
Trevisan, 1889 |
Type strain |
ATCC 12633
CCUG 12690
CFBP 2066
DSM 291
HAMBI 7
JCM 13063 and 20120
LMG 2257
NBRC 14164
NCAIM B.01634
NCCB 72006 and 68020
NCTC 10936
|
Synonyms |
Bacillus fluorescens putidus" Flügge 1886
Bacillus putidus Trevisan 1889
Pseudomonas eisenbergii Migula 1900
Pseudomonas convexa Chester 1901
Pseudomonas incognita Chester 1901
Pseudomonas ovalis Chester 1901
Pseudomonas rugosa (Wright 1895) Chester 1901
Pseudomonas striata Chester 1901
Pseudomonas mildenbergii Bergey, et al.
Arthrobacter siderocapsulatus Dubinina and Zhdanov 1975
Pseudomonas arvilla O. Hayaishi
Pseudomonas barkeri Rhodes
Pseudomonas cyanogena Hammer
|
Pseudomonas putida is a gram-negative rod-shaped saprotrophic soil bacterium. Based on 16S rRNA analysis, P. putida has been placed in the P. putida group, to which it lends its name.[1]
It is the first patented organism in the world. Because it is a living organism the patent was disputed and brought before the United States Supreme Court in the historic court case Diamond v. Chakrabarty which the inventor, Ananda Mohan Chakrabarty, won. It demonstrates a very diverse metabolism, including the ability to degrade organic solvents such as toluene.[2] This ability has been put to use in bioremediation, or the use of microorganisms to biodegrade oil. Use of P. putida is preferable to some other Pseudomonas species capable of such degradation as it is a safe species of bacteria, unlike P. aeruginosa for example, which is an opportunistic human pathogen.
Contents
- 1 Uses
- 1.1 Bioremediation
- 1.2 Biocontrol
- 1.3 Oligonucleotide Usage Signatures of the Pseudomonas putida KT2440 Genome
- 1.4 Organic Synthesis
- 1.5 CBB5 and caffeine consumption
- 2 References
- 3 External links
Uses[edit]
Bioremediation[edit]
The diverse metabolism of P. putida may be exploited for bioremediation; for example, it is used as a soil inoculant to remedy naphthalene contaminated soils.[3]
P. putida is capable of converting styrene oil into the biodegradable plastic PHA.[4][5] This may be of use in the effective recycling of Polystyrene foam, otherwise thought to be non-biodegradable.
Biocontrol[edit]
P. putida has demonstrated potential biocontrol properties, as an effective antagonist of damping off diseases such as Pythium[6] and Fusarium.[7]
Oligonucleotide Usage Signatures of the Pseudomonas putida KT2440 Genome[edit]
Di- to pentanucleotide usage and the list of the most abundant octa- to tetradecanucleotides are useful measures of the bacterial genomic signature. The Pseudomonas putida KT2440 chromosome is characterized by strand symmetry and intra-strand parity of complementary oligonucleotides. Each tetranucleotide occurs with similar frequency on the two strands. Tetranucleotide usage is biased by G+C content and physicochemical constraints such as base stacking energy, dinucleotide propeller twist angle or trinucleotide bendability. The 105 regions with atypical oligonucleotide composition can be differentiated by their patterns of oligonucleotide usage into categories of horizontally acquired gene islands, multidomain genes or ancient regions such as genes for ribosomal proteins and RNAs. A species-specific extragenic palindromic sequence is the most common repeat in the genome that can be exploited for the typing of P. putida strains. In the coding sequence of P. putida LLL is the most abundant tripeptide.[8]
Organic Synthesis[edit]
Certain variants of P. putida have been used in organic synthesis, the first example being the oxidation of benzene, employed by Prof. S. V. Ley in the synthesis of the cyclitol (+/-)pinitol.[9]
CBB5 and caffeine consumption[edit]
Pseudomonas putida CBB5 can live on pure caffeine and has been observed to break caffeine down into carbon dioxide and ammonia.[10][11]
References[edit]
- ^ Anzai, et al.; Kim, H; Park, JY; Wakabayashi, H; Oyaizu, H (2000, Jul). "Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence". Int J Syst Evol Microbiol 50 (4): 1563–89. doi:10.1099/00207713-50-4-1563. PMID 10939664.
- ^ Marques S, Ramos JL. (1993) Transcriptional control of the Pseudomonas putida TOL plasmid catabolic pathways. Molecular Microbiology 9(5):923-9. doi:10.1111/j.1365-2958.1993.tb01222.x PMID 7934920
- ^ Newton C.M. Gomes, Irina A. Kosheleva, Wolf-Rainer Abraham, Kornelia Smalla (2005) Effects of the inoculant strain Pseudomonas putida KT2442 (pNF142) and of naphthalene contamination on the soil bacterial community. FEMS Microbiology Ecology 54 (1), 21–33.
- ^ Immortal Polystyrene Foam Meets its Enemy | LiveScience
- ^ Ward PG, Goff M, Donner M, Kaminsky W, O'Connor KE. (2006) A two step chemo-biotechnological conversion of polystyrene to a biodegradable thermoplastic. Environmental Science and Technology 40(7):2433-7. PMID 16649270
- ^ Amer GA, Utkhede RS. (2000) Development of formulations of biological agents for management of root rot of lettuce and cucumber. Can J Microbiol. 46(9):809-16. PMID 11006841
- ^ Validov S, Kamilova F, Qi S, Stephan D, Wang JJ, Makarova N, Lugtenberg B. (2007) Selection of bacteria able to control Fusarium oxysporum f. sp. radicis-lycopersici in stonewool substrate. J Appl Microbiol. 102(2):461-71. PMID 17241352
- ^ Cornelis P (editor). (2008). Pseudomonas: Genomics and Molecular Biology (1st ed.). Caister Academic Press. ISBN 1-904455-19-0. ISBN 978-1-904455-19-6 .
- ^ Microbial oxidation in synthesis: A six-step preparation of (+/-)-pinitol from benzene, S. V. Ley et al., Tetrahedron Lett. Volume 28, 1987, Pages 225 doi:10.1016/S0040-4039(00)95692-2
- ^ [1]
- ^ PubMed
External links[edit]
- Risk Assessment Summary, CEPA 1999. Pseudomonas putida CR30RNSLL(pADPTel).
- Pseudomonas putida is an example for plant growth promoting Rhizobacterium,which produces iron chelating substances.
UpToDate Contents
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
English Journal
- Binary combination of epsilon-poly-l-lysine and isoeugenol affect progression of spoilage microbiota in fresh turkey meat, and delay onset of spoilage in Pseudomonas putida challenged meat.
- Hyldgaard M1, Meyer RL2, Peng M3, Hibberd AA3, Fischer J4, Sigmundsson A4, Mygind T4.
- International journal of food microbiology.Int J Food Microbiol.2015 Dec 23;215:131-42. doi: 10.1016/j.ijfoodmicro.2015.09.014. Epub 2015 Sep 25.
- Proliferation of microbial population on fresh poultry meat over time elicits spoilage when reaching unacceptable levels, during which process slime production, microorganism colony formation, negative organoleptic impact and meat structure change are observed. Spoilage organisms in raw meat, especi
- PMID 26433458
- Phenolic wastewater treatment through extractive recovery coupled with biodegradation in a two-phase partitioning membrane bioreactor.
- Praveen P1, Loh KC2.
- Chemosphere.Chemosphere.2015 Dec;141:176-82. doi: 10.1016/j.chemosphere.2015.07.022. Epub 2015 Jul 24.
- A two-phase partitioning membrane bioreactor (TPPMB) was designed and operated for treatment of high strength phenolic wastewater through extraction/stripping and concomitant biodegradation. Tributyl phosphate dissolved in kerosene was used as the organic phase, sodium hydroxide as the stripping pha
- PMID 26210322
- Understanding of real alternative redox partner of Streptomyces peucetius DoxA: Prediction and validation using in silico and in vitro analyses.
- Rimal H1, Lee SW1, Lee JH1, Oh TJ2.
- Archives of biochemistry and biophysics.Arch Biochem Biophys.2015 Nov 1;585:64-74. doi: 10.1016/j.abb.2015.08.019. Epub 2015 Sep 1.
- Streptomyces peucetius ATCC27952 contains the cytochrome P450 monoxygenase DoxA that is responsible for the hydroxylation of daunorubicin into doxorubicin. Although S. peucetius ATCC27952 contains several potential redox partners, the most suitable endogenous electron-transport system is still uncl
- PMID 26334717
Japanese Journal
- 3P-281 ポリヒドロキシアルカン酸における不飽和結合位置の解析(生合成,天然物化学,一般講演)
- 3P-279 中鎖ホモPHA合成に適した重合酵素改変体のスクリーニング(生合成,天然物化学,一般講演)
- 3P-197 固定化菌体二相培養系によるハロカテコール生産に対するpHの影響評価(バイオプロセス,一般講演)
Related Links
- Pseudomonas putida シュードモナス・プチダ 系統 抗菌薬 感受性 標準菌株 標準菌のMIC 臨床分離菌のMIC80 臨床分離菌のMIC60 備考 ニューキノロン系 Ciprofloxacin * 8 ** 0.5 ニューキノロン系 Sparfloxacin 50 ニューキノロン系 ...
- Pseudomonas putida KT2440 Link Database Experiment Title Analysis Type Samples References GSE23632 NCBI GEO Heterologous acyl-homoserine ...
Related Pictures
★リンクテーブル★
[★]
- 英
- glucose non-fermenting gram-negative rod, NF-GNR, glucose non-fermenting gram-negative bacillus
- 関
- グラム陰性細菌
参考
- http://www.yoshida-pharm.com/2004/letter29/
[★]
- ラ
- Pseudomonas putida
- 関
- シュードモナス・プチダ
[★]
シュードモナス属