出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2016/12/26 12:05:20」(JST)
ヒストン脱アセチル化酵素(-だつあせちるかこうそ;Histone Deacetylase(HDAC);EC 3.5.1)とはクロマチン構造において主要な構成因子であるヒストンの脱アセチル化を行う酵素である。遺伝子の転写制御において重要な役割を果たしている。ヒトでは、現在HDAC1-11,SirT1-7の18種類が同定されている。
遺伝子の発現は遺伝子の塩基配列によるもの以外にDNAあるいはヒストンに対する後付けの修飾により制御される場合がある(エピジェネティックな制御)。ヒストンはDNAが巻きついているコアヒストン(H2A、H2B、H3、H4)とDNAのリンカー部分に結合しているリンカーヒストン(H1)に大別される。コアヒストンのアセチル化はエピジェネティックな遺伝子の制御において重要な役割を担っている[1]。
ヒストンはそのアミノ酸配列中にリジンやアルギニンなどの塩基性アミノ酸を多く含むため通常陽性に荷電しており、陰性に荷電しているDNAとの結合が容易である。細胞内のヒストンアセチル基転移酵素(英:Histone Acetyl Transferase、HAT)により行われるヒストンアセチル化はヒストン中の特定のリジン残基のアミノ基(-NH2)をアミド(-NHCOCH3)に変換することにより電荷を中和してしまうため、結果としてヒストン-DNA間の結合を部分的に弱める。このことはヒストンに対するDNAの巻きつきが弱くなることを意味し、隣り合ったヒストン-DNA複合体(ヌクレオソーム)同士をつないでいるDNA鎖(リンカーDNA)に対して転写因子やRNAポリメラーゼがより結合しやすい状態になる。ヒストン脱アセチル化とはこのアセチル化された部位を加水分解により除去し、元のアミノ基に戻すことによりヒストンへのDNAの巻きつきを強めて転写を抑制する反応であり、ヒストンアセチル化とは逆の機構である。ヒストン脱アセチル化反応はHDACにより行われる。
ヒストンでは、N末端のリシン残基がアセチル化、脱アセチル化され、これが遺伝子発現の制御に関わっている。ヒストンが多数アセチル化されている染色体領域は、遺伝子の転写が活発に行われており、ヒストンのアセチル化は遺伝子発現を活性化させ、脱アセチル化は遺伝子の発現を抑制していると考えられている[2][3]。
ヒストンは上記で述べたアセチル化の他にもリン酸化やメチル化による制御を受ける。HDACは細胞内情報伝達(Notchシグナリング等)や細胞周期の制御にも関与している。特に近年、HDACは癌治療の標的分子として注目されている[4]。
HDACは配列の相同性などにより4つのクラスに分類される。
分類 | 出芽酵母 | 分裂酵母 | ヒト |
クラス I | Rpd3 | Clr6 | HDAC1 |
---|---|---|---|
HDAC2 | |||
HDAC3 | |||
HDAC8 | |||
クラス II | Hda1 | Clr3 | HDAC4 |
HDAC5 | |||
HDAC6 | |||
HDAC7 | |||
HDAC9 | |||
HDAC10 | |||
クラス III | Sir2 | Sir2 | SirT1 |
SirT2 | |||
SirT3 | |||
SirT4 | |||
SirT5 | |||
SirT6 | |||
SirT7 | |||
クラス IV | - | - | HDAC11 |
この項目は、生物学に関連した書きかけの項目です。この項目を加筆・訂正などしてくださる協力者を求めています(プロジェクト:生命科学/Portal:生物学)。 |
histone deacetylase | |||||||||
---|---|---|---|---|---|---|---|---|---|
Catalytic domain of Human histone deacetylase 4 with bound inhibitor. PDB rendering based on 2vqj.[1]
|
|||||||||
Identifiers | |||||||||
EC number | 3.5.1.98 | ||||||||
CAS number | 9076-57-7 | ||||||||
Databases | |||||||||
IntEnz | IntEnz view | ||||||||
BRENDA | BRENDA entry | ||||||||
ExPASy | NiceZyme view | ||||||||
KEGG | KEGG entry | ||||||||
MetaCyc | metabolic pathway | ||||||||
PRIAM | profile | ||||||||
PDB structures | RCSB PDB PDBe PDBsum | ||||||||
Gene Ontology | AmiGO / EGO | ||||||||
|
Histone deacetylase superfamily | |||||||||
---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||
Symbol | Hist_deacetyl | ||||||||
Pfam | PF00850 | ||||||||
InterPro | IPR000286 | ||||||||
SCOP | 1c3s | ||||||||
SUPERFAMILY | 1c3s | ||||||||
|
Histone deacetylases (EC 3.5.1.98, HDAC) are a class of enzymes that remove acetyl groups (O=C-CH3) from an ε-N-acetyl lysine amino acid on a histone, allowing the histones to wrap the DNA more tightly. This is important because DNA is wrapped around histones, and DNA expression is regulated by acetylation and de-acetylation. Its action is opposite to that of histone acetyltransferase. HDAC proteins are now also called lysine deacetylases (KDAC), to describe their function rather than their target, which also includes non-histone proteins.[2]
Together with the acetylpolyamine amidohydrolases and the acetoin utilization proteins, the histone deacetylases form an ancient protein superfamily known as the histone deacetylase superfamily.[3]
HDACs, are classified in four classes depending on sequence homology to the yeast original enzymes and domain organization:[4]
Class | Members | Catalytic sites | Subcellular localization | Tissue distribution | Substrates | Binding partners | Knockout phenotype |
---|---|---|---|---|---|---|---|
I | HDAC1 | 1 | Nucleus | Ubiquitous | Androgen receptor, SHP, p53, MyoD, E2F1, STAT3 | – | embryonic lethal, increased histone acetylation, increase in p21 and p27 |
HDAC2 | 1 | Nucleus | Ubiquitous | Glucocorticoid receptor, YY1, BCL6, STAT3 | – | Cardiac defect | |
HDAC3 | 1 | Nucleus | Ubiquitous | SHP, YY1, GATA1, RELA, STAT3, MEF2D | – | – | |
HDAC8 | 1 | Nucleus/cytoplasm | Ubiquitous? | – | EST1B | – | |
IIA | HDAC4 | 1 | Nucleus / cytoplasm | heart, skeletal muscle, brain | GCMA, GATA1, HP1 | RFXANK | Defects in chondrocyte differentiation |
HDAC5 | 1 | Nucleus / cytoplasm | heart, skeletal muscle, brain | GCMA, SMAD7, HP1 | REA, estrogen receptor | Cardiac defect | |
HDAC7 | 1 | Nucleus / cytoplasm / mitochondria | heart, skeletal muscle, pancreas, placenta | PLAG1, PLAG2 | HIF1A, BCL6, endothelin receptor, ACTN1, ACTN4, androgen receptor, Tip60 | Maintenance of vascular integrity, increase in MMP10 | |
HDAC9 | 1 | Nucleus / cytoplasm | brain, skeletal muscle | – | FOXP3 | Cardiac defect | |
IIB | HDAC6 | 2 | Mostly cytoplasm | heart, liver, kidney, placenta | α-Tubulin, HSP90, SHP, SMAD7 | RUNX2 | – |
HDAC10 | 1 | Mostly cytoplasm | liver, spleen, kidney | – | – | – | |
III | sirtuins in mammals (SIRT1, SIRT2, SIRT3, SIRT4, SIRT5, SIRT6, SIRT7) | – | – | – | – | – | – |
Sir2 in the yeast S. cerevisiae | – | – | – | – | – | – | |
IV | HDAC11 | 2 | Nucleus / cytoplasm | brain, heart, skeletal muscle, kidney | – | – | – |
HDAC (except class III) contain zinc and are known as Zn-dependent histone deacetylases.[5]
HDAC proteins are grouped into four classes (see above) based on function and DNA sequence similarity. Class I, II and IV are considered "classical" HDACs whose activities are inhibited by trichostatin A (TSA) and have a zinc dependent active site, whereas Class III enzymes are a family of NAD+-dependent proteins known as sirtuins and are not affected by TSA.[6] Homologues to these three groups are found in yeast having the names: reduced potassium dependency 3 (Rpd3), which corresponds to Class I; histone deacetylase 1 (hda1), corresponding to Class II; and silent information regulator 2 (Sir2), corresponding to Class III. Class IV contains just one isoform (HDAC11), which is not highly homologous with either Rpd3 or hda1 yeast enzymes,[7] and therefore HDAC11 is assigned to its own class. The Class III enzymes are considered a separate type of enzyme and have a different mechanism of action; these enzymes are NAD+-dependent, whereas HDACs in other classes require Zn2+ as a cofactor.[8]
Within the Class I HDACs, HDAC 1, 2, and 3 are found primarily in the nucleus, whereas HDAC8 is found in both the nucleus and the cytoplasm, and is also membrane-associated. Class II HDACs (HDAC4, 5, 6, 7 9, and 10) are able to shuttle in and out of the nucleus, depending on different signals.[9][10]
HDAC6 is a cytoplasmic, microtuble-associated enzyme. HDAC6 deacetylates tubulin, Hsp90, and cortactin, and forms complexes with other partner proteins, and is, therefore, involved in a variety of biological processes.[11]
Histone tails are normally positively charged due to amine groups present on their lysine and arginine amino acids. These positive charges help the histone tails to interact with and bind to the negatively charged phosphate groups on the DNA backbone. Acetylation, which occurs normally in a cell, neutralizes the positive charges on the histone by changing amines into amides and decreases the ability of the histones to bind to DNA. This decreased binding allows chromatin expansion, permitting genetic transcription to take place. Histone deacetylases remove those acetyl groups, increasing the positive charge of histone tails and encouraging high-affinity binding between the histones and DNA backbone. The increased DNA binding condenses DNA structure, preventing transcription.
Histone deacetylase is involved in a series of pathways within the living system. According to the Kyoto Encyclopedia of Genes and Genomes (KEGG), these are:
Histone acetylation plays an important role in the regulation of gene expression. Hyperacetylated chromatin is transcriptionally active, and hypoacetylated chromatin is silent. A study on mice found that a specific subset of mouse genes (7%) was deregulated in the absence of HDAC1.[12] Their study also found a regulatory crosstalk between HDAC1 and HDAC2 and suggest a novel function for HDAC1 as a transcriptional coactivator. HDAC1 expression was found to be increased in the prefrontal cortex of schizophrenia subjects,[13] negatively correlating with the expression of GAD67 mRNA.
It is a mistake to regard HDACs solely in the context of regulating gene transcription by modifying histones and chromatin structure, although that appears to be the predominant function. The function, activity, and stability of proteins can be controlled by post-translational modifications. Protein phosphorylation is perhaps the most widely studied and understood modification in which certain amino acid residues are phosphorylated by the action of protein kinases or dephosphorylated by the action of phosphatases. The acetylation of lysine residues is emerging as an analogous mechanism, in which non-histone proteins are acted on by acetylases and deacetylases.[14] It is in this context that HDACs are being found to interact with a variety of non-histone proteins—some of these are transcription factors and co-regulators, some are not. Note the following four examples:
These are just some examples of constantly emerging non-histone, non-chromatin roles for HDACs.
Histone deacetylase inhibitors (HDIs) have a long history of use in psychiatry and neurology as mood stabilizers and anti-epileptics, for example, valproic acid. In more recent times, HDIs are being studied as a mitigator or treatment for neurodegenerative diseases.[22][23] Also in recent years, there has been an effort to develop HDIs for cancer therapy.[24][25] Vorinostat (SAHA) was approved in 2006 for the treatment of cutaneous manifestations in patients with cutaneous T cell lymphoma (CTCL) that have failed previous treatments. A second HDI, Istodax (romidepsin), was approved in 2009 for patients with CTCL. The exact mechanisms by which the compounds may work are unclear, but epigenetic pathways are proposed.[26] In addition, a clinical trial is studying valproic acid effects on the latent pools of HIV in infected persons.[27] HDIs are currently being investigated as chemosensitizers for cytotoxic chemotherapy or radiation therapy, or in association with DNA methylation inhibitors based on in vitro synergy.[28] Recent research has focused on developing isoform selective HDIs which can aid in elucidating role of individual HDAC isoforms and device strategy for effective treatment of diseases related to relevant HDAC isoform.[29][30][31]
HDAC inhibitors have effects on non-histone proteins that are related to acetylation. HDIs can alter the degree of acetylation of these molecules and, therefore, increase or repress their activity. For the four examples given above (see Function) on HDACs acting on non-histone proteins, in each of those instances the HDAC inhibitor Trichostatin A (TSA) blocks the effect. HDIs have been shown to alter the activity of many transcription factors, including ACTR, cMyb, E2F1, EKLF, FEN 1, GATA, HNF-4, HSP90, Ku70, NFκB, PCNA, p53, RB, Runx, SF1 Sp3, STAT, TFIIE, TCF, YY1.[32][33]
Research has shown that histone deacetylase inhibitors may modulate the latency of some viruses, resulting in reactivation.[34] This has been shown to occur, for instance, with a latent human herpesvirus-6 infection.
Transcription (Bacterial, Eukaryotic)
|
|||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Transcriptional regulation |
|
||||||||||||||||||||
Promotion |
|
||||||||||||||||||||
Initiation (bacterial, eukaryotic |
|
||||||||||||||||||||
Elongation |
|
||||||||||||||||||||
Termination (bacterial, |
|
Hydrolases: carbon-nitrogen non-peptide (EC 3.5)
|
|
---|---|
3.5.1: Linear amides / Amidohydrolases |
|
3.5.2: Cyclic amides/ Amidohydrolases |
|
3.5.3: Linear amidines/ Ureohydrolases |
|
3.5.4: Cyclic amidines/ Aminohydrolases |
|
3.5.5: Nitriles/ Aminohydrolases |
|
3.5.99: Other |
|
Enzymes
|
|
---|---|
Activity |
|
Regulation |
|
Classification |
|
Types |
|
HDAC inhibitors
|
|
---|---|
|
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
拡張検索 | 「HDACI」 |
関連記事 | 「HD」 |
.