補酵素A |
|
|
識別情報 |
CAS登録番号 |
85-61-0 |
PubChem |
6816 |
ChemSpider |
6557 |
UNII |
SAA04E81UX |
MeSH |
Coenzyme+A |
- O=C(NCCS)CCNC(=O)C(O)C(C)(C)COP(=O)(O)OP(=O)(O)OC[C@H]3O[C@@H](n2cnc1c(ncnc12)N)[C@H](O)[C@@H]3OP(=O)(O)O
|
- InChI=1S/C21H36N7O16P3S/c1-21(2,16(31)19(32)24-4-3-12(29)23-5-6-48)8-41-47(38,39)44-46(36,37)40-7-11-15(43-45(33,34)35)14(30)20(42-11)28-10-27-13-17(22)25-9-26-18(13)28/h9-11,14-16,20,30-31,48H,3-8H2,1-2H3,(H,23,29)(H,24,32)(H,36,37)(H,38,39)(H2,22,25,26)(H2,33,34,35)/t11-,14-,15-,16?,20-/m1/s1
Key: RGJOEKWQDUBAIZ-DRCCLKDXSA-N
InChI=1/C21H36N7O16P3S/c1-21(2,16(31)19(32)24-4-3-12(29)23-5-6-48)8-41-47(38,39)44-46(36,37)40-7-11-15(43-45(33,34)35)14(30)20(42-11)28-10-27-13-17(22)25-9-26-18(13)28/h9-11,14-16,20,30-31,48H,3-8H2,1-2H3,(H,23,29)(H,24,32)(H,36,37)(H,38,39)(H2,22,25,26)(H2,33,34,35)/t11-,14-,15-,16?,20-/m1/s1
Key: RGJOEKWQDUBAIZ-DRCCLKDXBU
|
特性 |
化学式 |
C21H36N7O16P3S |
モル質量 |
767.535 g/mol |
特記なき場合、データは常温 (25 °C)・常圧 (100 kPa) におけるものである。 |
補酵素A(ほこうそA、コエンザイムA あるいは CoA)は、生物にとって極めて重要な補酵素(助酵素)である。パントテン酸とアデノシン二リン酸、および 2-チオキシエタンアミンから構成されており、化学式はC21H36P3N7O16S、分子量は767.5 g/molである。
末端にあるチオール基に様々な化合物のアシル基がチオエステル結合することによってクエン酸回路やβ酸化などの代謝反応に関わる。例えばアセチル基が結合したものはアセチルCoAである。その他にも多くの補酵素Aのチオエステル化合物がある。
1945年、ピルビン酸からクエン酸回路に入る過程の中間体「活性酢酸」(アセチルCoA)としてリップマンによって発見された。この業績により、彼は1953年にノーベル賞を受賞した。なお、同年、一緒に授賞したクレブスは、1937年にクエン酸回路を完成したことで有名である。しかし、1937年当時は補酵素Aはまだ知られておらず、中間代謝の研究におけるリップマンの業績は非常に大きいといえる。
生体内での動作
アセチルCoAは様々な経路によって生産される。最も代表的なものは解糖系(EM経路)で、ピルビン酸を原料とし、ピルビン酸デヒドロゲナーゼ複合体の働きによって生成する。その他にも脂肪酸の代謝や、アミノ酸の異化によっても生成する。また、一部の嫌気性微生物は二酸化炭素と水素を反応させることによって作り出す。この経路はアセチルCoA経路と呼ばれる。殆どの生合成経路に関連する、最も重要な化合物といっても過言ではない。クエン酸シンテターゼによってオキサロ酢酸と反応してクエン酸となりクエン酸回路に組み込まれる。また、アセチルCoAチオラーゼの働きによりアセトアセチルCoAとなってメバロン酸経路の出発物質となる。また、マロニルCoAとともに酢酸-マロン酸経路とも関連している。
補酵素Aのおもな誘導体
- アセトアセチルCoA
- アセチル基がアセチルCoAに結合したもので、チオラーゼが触媒するアセチルCoA 2分子の縮合反応によって生成する。テルペノイド合成(メバロン酸経路)及びβ酸化の最終段階で現れる。詳細については各生合成経路を参照のこと。
- カフェオイルCoA
- コーヒー酸と補酵素Aからなる。リグニン生合成に関わる物質の一つで、trans-コーヒー酸から4-クマル酸リガーゼの働きによって生成する。キナ酸 O-ヒドロキシシンナモイルトランスフェラーゼによりクロロゲン酸が生成。また、シンナモイルCoAレダクターゼによりコーヒーアルデヒドができる。
- クマロイルCoA(4-クマロイルCoA)
- p-クマル酸(4-ヒドロキシケイ皮酸)と補酵素Aが縮合したものであり、フェルロイルCoA、シンナモイルCoA、シナポイルCoA及びカフェオイルCoAとともにフェニルプロパノイド/リグナン合成の中間体であり、フラボノイド生合成の出発物質でもある。トリヒドロキシスチルベンシンテターゼによってトリヒドロキシスチルベンとなり、シンナモイルCoAレダクターゼにより、クマリルアルデヒドとなる。
- グルタリルCoA
- グルタル酸と補酵素Aの縮合化合物。リシンおよびトリプトファンの分解に伴って生成する2-オキソアジピン酸と補酵素Aが2-オキソアジピン酸デヒドロゲナーゼによって縮合して生成する。あるいは、グルタル酸-CoAリガーゼによる縮合反応によってできる。グルタリルCoAレダクターゼによってクロトニルCoAとなる。
- クロトニルCoA
- クロトン酸とのチオエステル化合物。トリプトファンおよびリシン代謝の中間体として、グルタリルCoAがグルタリルCoAレダクターゼによって還元されて生成する。これはさらにエノイルCoAヒドラーゼによる還元を受け、3-ヒドロキシブタノイルCoAとなり、最終的には解糖系に組み入れられる。
- シナポイルCoA
- 4-クマル酸-CoAリガーゼによってシナップ酸とCoAのチオエステル化合物で、ケイ皮酸などともにリグニン生合成に関連する化合物。シンナモイルCoAレダクターゼによってシナポイルアルデヒドとなる。さらにこの化合物は還元されてシナポイルアルコールとなり、リグニンの直接の原料となる。
- シンナモイルCoA
- ケイ皮酸と補酵素Aから4-クマル酸-CoAリガーゼにより生成する。リグニン合成に関連する化合物の一種である。シンナモイルCoAレダクターゼにより還元されてシナミルアルデヒドとなるほか、ピノシルビンシンテターゼによりピノシルビンとなる。
- スクシニルCoA(サクシニルCoA)
- コハク酸と補酵素Aのチオエステル化合物で、クエン酸回路を構成する化合物の1つである。これは2-オキソグルタル酸と補酵素Aが2-オキソグルタル酸デヒドロゲナーゼによって反応してできる化合物で、スクシニルCoAシンテターゼにより、コハク酸となる。この化合物の重要な役割はクエン酸回路の中間体であるということだけでなく、クエン酸回路の反応を調節する点にある。スクシニルCoAによってクエン酸シンターゼ及び2-オキソグルタル酸デヒドロゲナーゼがアロステリック効果により阻害を受けるのである。スクシニルCoAは脂肪酸代謝でも重要な役割を果たす。脂肪酸代謝において、偶数個の炭素を有する脂肪酸はβ酸化によりアセチルCoA単位に分割されてクエン酸回路に組み込まれるが、奇数個の炭素を有する脂肪酸は最後にプロピオニルCoAが残ってしまう(プロピオニルCoAはアミノ酸の代謝によっても生成する)。これを代謝するためにプロピオニルCoAは特殊な酸化を受ける。即ち、プロピオニルCoAカルボキシラーゼによって2位の炭素がカルボキシル化し、D-メチルマロニルCoAとなる。さらにこれはメチルマロニルCoAラセマーゼによりラセミ化し、L-メチルマロニルCoAとなる。これがメチルマロニルCoAムターゼにより異性化し、スクシニルCoAとなった上でクエン酸回路に組み込まれるのである。
- 3-ヒドロキシブタノイルCoA
- トリプトファン及びリシンの分解の中間体である化合物で、形式的には3-ヒドロキシ酪酸と補酵素Aのチオエステル化合物。生体内ではクロトニルCoAがエノイルCoAヒドラーゼによって水素化されることにより生成する。3-ヒドロキシアシルデヒドロゲナーゼによってアセトアセチルCoAとなる。
- ヒドロキシメチルグルタリルCoA
- 略称のHMG-CoAで知られている。アセトアセチルCoAがHMG-CoAシンテターゼによって還元されて生成する。メバロン酸回路の中心的な化合物であり、HMG-CoAレダクターゼによってメバロン酸となる反応がテルペノイド/ステロイド/カロテノイド合成の律速反応である。そのため、英語ではメバロン酸経路をHMG-CoA経路と呼んでいる。
- フェルロイルCoA
- フェルラ酸(3-メトキシ-4-ヒドロキシケイ皮酸)と補酵素Aの縮合化合物。フェルラ酸から4-クマル酸-CoAリガーゼによって生成する経路と、カフェオイルCoAからカフェオイル-CoA Oレダクターゼによって生成する経路がある。シンナモイルCoAレダクターゼにより、コニフェリルアルデヒドとなる。
- プロピオニルCoA
- プロピオン酸と補酵素Aのチオエステル化合物。奇数炭素鎖脂肪酸やバリン、ロイシン、イソロイシン及びβ-アラニンの分解によって生成する、中間体。直接にはアクリロイルCoAがアシルCoAデヒドロゲナーゼによって生成する。プロピオニルCoAカルボキシラーゼによりカルボキシル化され、メチルマロニルCoAとなった後、いくつかの反応を受けてスクシニルCoAとなり、クエン酸回路に組み込まれる。
- マロニルCoA
- マロン酸と補酵素Aのチオエステル化合物である。酢酸-マロン酸経路及び脂肪酸合成でみられる。酢酸-マロン酸経路ではアセチルCoAと縮合反応をすることにより、ポリケチドや芳香族化合物生合成の基質となる。また、脂肪酸合成ではアセチルCoAがアセチルCoAカルボキシラーゼによってマロニルCoAとなる。これはATPを消費する吸エルゴン反応で脂肪酸合成の律速段階である。また、この反応にはビオチンが必須である。このマロニルCoAはアシルキャリヤータンパク質 (ACP) と結合してアセチル基を付加されるなどして炭素鎖が延長され、脂肪酸となる(詳細は脂肪酸を参照)。
関連項目
補因子 |
補酵素 |
ビタミン: NAD+ (B3) - NADP+ (B3) - 補酵素A (B5) - THF / H4F (B9), DHF, MTHF - アスコルビン酸 (C) - メナキノン (K) - 補酵素F420
非ビタミン: ATP - CTP - SAM - PAPS - GSH - 補酵素B - 補酵素M - 補酵素Q - メタノフラン - BH4 - H4MPT
|
有機補欠分子族 |
ビタミン: TPP / ThDP (B1) - FMN, FAD (B2) - PLP / P5P (B6) - ビオチン (B7) - メチルコバラミン, コバラミン (B12)
非ビタミン: ヘム - α-リポ酸 - モリブドプテリン - PQQ
|
金属補欠分子族 |
Ca2+ - Cu2+ - Fe2+, Fe3+ - Mg2+ - Mn2+ - Mo - Ni2+ - Se - Zn2+
|
- 主要な生体物質
- 炭水化物
- アルコール
- 糖タンパク質
- 配糖体
- 脂質
- エイコサノイド
- 脂肪酸/脂肪酸の代謝中間体
- リン脂質
- スフィンゴ脂質
- ステロイド
- 核酸
- 核酸塩基
- ヌクレオチド代謝中間体
- タンパク質
- タンパク質を構成するアミノ酸/アミノ酸の代謝中間体
- テトラピロール
- ヘムの代謝中間体
|
|
クエン酸回路 |
ピルビン酸 - アセチルCoA - オキサロ酢酸 - クエン酸 - cis-アコニット酸 - イソクエン酸 - オキサロコハク酸 - α-ケトグルタル酸 - スクシニルCoA - コハク酸 - フマル酸 - L-リンゴ酸
|
←解糖系
電子伝達系→
|
|
Coenzyme A
|
|
Identifiers |
CAS Number
|
85-61-0 Y |
ChEBI |
CHEBI:15346 N |
ChEMBL |
ChEMBL1213327 N |
ChemSpider |
6557 Y |
DrugBank |
DB01992 Y |
ECHA InfoCard |
100.001.472 |
Jmol 3D model |
Interactive image |
KEGG |
C00010 Y |
MeSH |
Coenzyme+A |
PubChem |
6816 |
UNII |
SAA04E81UX Y |
InChI
-
InChI=1S/C21H36N7O16P3S/c1-21(2,16(31)19(32)24-4-3-12(29)23-5-6-48)8-41-47(38,39)44-46(36,37)40-7-11-15(43-45(33,34)35)14(30)20(42-11)28-10-27-13-17(22)25-9-26-18(13)28/h9-11,14-16,20,30-31,48H,3-8H2,1-2H3,(H,23,29)(H,24,32)(H,36,37)(H,38,39)(H2,22,25,26)(H2,33,34,35)/t11-,14-,15-,16?,20-/m1/s1 Y
Key: RGJOEKWQDUBAIZ-DRCCLKDXSA-N Y
-
InChI=1/C21H36N7O16P3S/c1-21(2,16(31)19(32)24-4-3-12(29)23-5-6-48)8-41-47(38,39)44-46(36,37)40-7-11-15(43-45(33,34)35)14(30)20(42-11)28-10-27-13-17(22)25-9-26-18(13)28/h9-11,14-16,20,30-31,48H,3-8H2,1-2H3,(H,23,29)(H,24,32)(H,36,37)(H,38,39)(H2,22,25,26)(H2,33,34,35)/t11-,14-,15-,16?,20-/m1/s1
Key: RGJOEKWQDUBAIZ-DRCCLKDXBU
|
SMILES
-
O=C(NCCS)CCNC(=O)C(O)C(C)(C)COP(=O)(O)OP(=O)(O)OC[C@H]3O[C@@H](n2cnc1c(ncnc12)N)[C@H](O)[C@@H]3OP(=O)(O)O
|
Properties |
Chemical formula
|
C21H36N7O16P3S |
Molar mass |
767.535 |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
N verify (what is YN ?) |
Infobox references |
|
|
Coenzyme A (CoA, CoASH, or HSCoA) is a coenzyme, notable for its role in the synthesis and oxidation of fatty acids, and the oxidation of pyruvate in the citric acid cycle. All genomes sequenced to date encode enzymes that use coenzyme A as a substrate, and around 4% of cellular enzymes use it (or a thioester, such as acetyl-CoA) as a substrate. In humans, CoA biosynthesis requires cysteine, pantothenate, and adenosine triphosphate (ATP).[1]
Contents
- 1 Biosynthesis
- 2 Discovery of structure
- 3 Function
- 4 Use in biological research
- 5 Non-exhaustive list of coenzyme A-activated acyl groups
- 6 Additional images
- 7 References
- 8 Bibliography
Biosynthesis
In all living organisms, Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, from pantothenate and cysteine:[2]
- Pantothenate (vitamin B5) is phosphorylated to 4'-phosphopantothenate by the enzyme pantothenate kinase (PanK; CoaA; CoaX)
- A cysteine is added to 4'-phosphopantothenate by the enzyme phosphopantothenoylcysteine synthetase (PPCS; CoaB) to form 4'-phospho-N-pantothenoylcysteine.
- PPC is decarboxylated to 4'-phosphopantetheine by phosphopantothenoylcysteine decarboxylase (PPC-DC; CoaC)
- 4'-phosphopantetheine is adenylylated to form dephospho-CoA by the enzyme phosphopantetheine adenylyl transferase (PPAT; CoaD)
- Finally, dephospho-CoA is phosphorylated to coenzyme A by the enzyme dephosphocoenzyme A kinase (DPCK; CoaE).
Enzyme nomenclature abbreviations in parentheses represent eukaryotic and prokaryotic enzymes respectively. In some plants and bacteria, including Escherichia coli, pantothenate can be synthesised de novo and is therefore not considered essential.
Discovery of structure
The structure of coenzyme A was identified in the early 1950s at the Lister Institute, London, together with other workers at Harvard Medical School and Massachusetts General Hospital.[3]
Function
Since coenzyme A is, in chemical terms, a thiol, it can react with carboxylic acids to form thioesters, thus functioning as an acyl group carrier. It assists in transferring fatty acids from the cytoplasm to mitochondria. A molecule of coenzyme A carrying an acetyl group is also referred to as acetyl-CoA. When it is not attached to an acyl group, it is usually referred to as 'CoASH' or 'HSCoA'.
Coenzyme A is also the source of the phosphopantetheine group that is added as a prosthetic group to proteins such as acyl carrier protein and formyltetrahydrofolate dehydrogenase.[4][5]
Use in biological research
Coenzyme A is available from various chemical suppliers as the free acid and or lithium or sodium salts. The free acid of coenzyme A is detectably unstable, with ~5% degradation observed after 6 months when stored at -20˚C,[6] and near complete degradation after 1 month at 37˚C. [7] The lithium and sodium salts of CoA are more stable, with negligible degradation noted over several months at various temperatures [8] Aqueous solutions of coenzyme A are unstable above pH 8, with 31% of activity lost after 24 hours at 25˚C and pH 8. CoA stock solutions are relatively stable when frozen at pH 2-6. The major route of CoA activity loss is likely the air oxidation of CoA to CoA disulfides. CoA mixed disulfides, such as CoA-S-S-glutathione, are commonly noted contaminants in commercial preparations of CoA.,[6] Free CoA can be regenerated from CoA disulfide and mixed CoA disulfides with reducing agents such as DTT or BME.
Non-exhaustive list of coenzyme A-activated acyl groups
See also: Category:Thioesters of coenzyme A.
- Acetyl-CoA
- fatty acyl-CoA (activated form of all fatty acids; only the CoA esters are substrates for important reactions such as mono-, di-, and triacylglycerol synthesis, carnitine palmitoyl transferase, and cholesterol esterification)
- Propionyl-CoA
- Butyryl-CoA
- Myristoyl-CoA
- Crotonyl-CoA
- Acetoacetyl-CoA
- Coumaroyl-CoA (used in flavonoid and stilbenoid biosynthesis)
- Benzoyl-CoA
- Phenylacetyl-CoA
- Acyl derived from dicarboxylic acids
- Malonyl-CoA
- Succinyl-CoA (used in heme biosynthesis)
- Hydroxymethylglutaryl-CoA (used in isoprenoid biosynthesis)
- Pimelyl-CoA (used in biotin biosynthesis)
Additional images
References
- ^ Matthew Daugherty; Boris Polanuyer; Michael Farrell; Michael Scholle; Athanasios Lykidis; Valérie de Crécy-Lagard; Andrei Osterman (2002). "Complete Reconstitution of the Human Coenzyme A Biosynthetic Pathway via Comparative Genomics". The Journal of Biological Chemistry. 277 (24): 21431–21439. doi:10.1074/jbc.M201708200. PMID 11923312.
- ^ Leonardi R, Zhang YM, Rock CO, Jackowski S (2005). "Coenzyme A: back in action". Progress in Lipid Research. 44 (2-3): 125–153. doi:10.1016/j.plipres.2005.04.001. PMID 15893380.
- ^ Baddiley, J.; Thain, E. M.; Novelli, G. D.; Lipmann, F. (1953). "Structure of Coenzyme A". Nature. 171 (4341): 76. doi:10.1038/171076a0.
- ^ Elovson J, Vagelos PR (July 1968). "Acyl carrier protein. X. Acyl carrier protein synthetase". J. Biol. Chem. 243 (13): 3603–11. PMID 4872726.
- ^ Strickland KC, Hoeferlin LA, Oleinik NV, Krupenko NI, Krupenko SA (January 2010). "Acyl carrier protein-specific 4'-phosphopantetheinyl transferase activates 10-formyltetrahydrofolate dehydrogenase". J. Biol. Chem. 285 (3): 1627–33. doi:10.1074/jbc.M109.080556. PMC 2804320. PMID 19933275.
- ^ a b Dawson, R. M. C. (1989). Data for biochemical research. Oxford: Clarendon Press. p. 118-119. ISBN 0-19-855299-8.
- ^ "Datasheet for free acid coenzyme A" (PDF). Oriental Yeast Co., LTD.
- ^ "Datasheet for lithium salt coenzyme A" (PDF). Oriental Yeast Co., LTD.
Bibliography
- Nelson, David L.; Cox, Michael M. (2005). Lehninger: Principles of Biochemistry (4th ed.). New York: W.H. Freeman. ISBN 0-7167-4339-6.
|
Wikimedia Commons has media related to Coenzyme A. |
Enzyme cofactors
|
|
Active forms |
vitamins |
- TPP / ThDP (B1)
- FMN, FAD (B2)
- NAD+, NADH, NADP+, NADPH (B3)
- Coenzyme A (B5)
- PLP / P5P (B6)
- Biotin (B7)
- THFA / H4FA, DHFA / H2FA, MTHF (B9)
- AdoCbl, MeCbl (B12)
- Ascorbic acid (C)
- Phylloquinone (K1), Menaquinone (K2)
- Coenzyme F420
|
|
non-vitamins |
- ATP
- CTP
- SAMe
- PAPS
- GSH
- Coenzyme B
- Cofactor F430
- Coenzyme M
- Coenzyme Q
- Heme / Haem (A, B, C, O)
- Lipoic Acid
- Methanofuran
- Molybdopterin/Molybdenum cofactor
- PQQ
- THB / BH4
- THMPT / H4MPT
|
|
minerals |
- Ca2+
- Cu2+
- Fe2+, Fe3+
- Mg2+
- Mn2+
- Mo
- Ni2+
- Zn2+
|
|
|
Base forms |
|