出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2015/09/02 22:24:39」(JST)
アセチレン | |
---|---|
IUPAC名
Ethyne[1] |
|
系統名
Acetylene
|
|
識別情報 | |
CAS登録番号 | 74-86-2 |
ChemSpider | 6086 |
UNII | OC7TV75O83 |
国連番号 | 1001 (dissolved) 3138 (in mixture with ethylene and propylene) |
KEGG | C01548 |
ChEBI | CHEBI:27518 |
ChEMBL | CHEMBL116336 |
SMILES
|
|
InChI
|
|
特性 | |
化学式 | C2H2 |
モル質量 | 26.04 g mol−1 |
密度 | 1.097 kg m−3 |
融点 |
−80.8 °C, 192.4 K, −113.4 °F (三重点) |
沸点 |
−84 °C, 189 K, -119 °F (昇華) |
酸解離定数 pKa | 25 |
構造 | |
分子の形 | 直線形 |
熱化学 | |
標準生成熱 ΔfH |
+226.88 kJ/mol |
危険性 | |
NFPA 704 |
4
1
3
|
特記なき場合、データは常温 (25 °C)・常圧 (100 kPa) におけるものである。 |
アセチレン (acetylene) は炭素数が2のアルキンである。IUPAC系統名はエチン ethyne、分子式は C2H2である。1836年にイギリスのエドモンド・デービーによって発見され、水素と炭素の化合物であるとされた。1860年になってマルセラン・ベルテロが再発見し、「アセチレン」と命名した。アルキンのうち工業的に最も重要なものである。
酸素と混合し、完全燃焼させた場合の炎の温度は3,330 °Cにも及ぶため、その燃焼熱を目的として金属加工工場などで多く使われる。高圧ガス保安法により、常用の温度で圧力が0.2 MPa以上になるもので、現に0.2 MPa以上のもの、または、15 °Cで0.2 MPa以上となるものである場合、褐色のボンベに保管することが定められている。
構造式は HC≡CH で、炭素-炭素間で三重結合を1個だけ持つ直線型分子。炭素‐炭素間でπ結合を二つ持ち、sp混成軌道を取り、結合角は180゚である。アルキンのうち最も簡単なものであり、異性体は存在しない。
常温では水に体積比 1:1 の割合で溶ける。テトラヒドロフランなどの有機溶媒にはより溶けやすい。爆発範囲は 2.5–81 vol%(空気中)である。純粋なものは無臭だが、市販されているものは通常硫黄化合物などの不純物を含むため、特有のにおいを持つ。
アセチレンや一般のアルキンは三重結合を持つ不飽和炭化水素のため反応性が大きく、さまざまな物質の合成の原料となる。銀、銅、水銀等の金属や金属化合物と反応し、爆発性のある金属アセチリドを生成する。人体に対して有害性はないが、可燃性である。
アセチレンの三重結合は付加反応を受けやすい。ニッケルを触媒として水素を付加させるとエチレンになり、さらに水素を付加させるとエタンになる。
また、アセチレンの三重結合にはハロゲン化水素などの H−X 型の分子を容易に付加させることができる。 アセチレンに塩化水素を付加させるとクロロエチレンになり、酢酸を付加させると酢酸ビニルになる。クロロエチレンや酢酸ビニルは合成高分子化合物の原料として用いられる。
アセチレンに水を付加させた場合はビニルアルコールとなるが、これは容易に異性化し、速やかにアセトアルデヒドに変わる。
アセチレンは付加重合をすることができる。アセチレン2分子が重合するとモノビニルアセチレンになる。モノビニルアセチレンはブタジエンやクロロプレンの原料として、合成ゴムをつくるときに用いられる。
アセチレン3分子が重合するとベンゼン、ジビニルアセチレン、アセチレニルジビニルになる。 ベンゼンを得る場合、加熱した鉄管もしくは石英管にアセチレンガスを通す方法がよく使われる。
さらに重合が進んで得られるポリマーがポリアセチレンで、導電性物質として利用される。
アセチレンをはじめとする末端アルキン上の水素は、一般的なアルケンやアルカンのものに比べて酸性が高く、適切な強塩基により引き抜いて金属イオンに置き換えることができる。例えば、アセチレンにn-ブチルリチウムを作用させるとリチウムアセチリドを与える。
また、硝酸銀水溶液にアセチレンを吹き込むと、銀アセチリドの白色沈殿ができる。硫酸銅に作用させると銅アセチリドの赤色沈殿が発生する。銀アセチリドも、銅アセチリドも乾燥していれば、わずかな衝撃で爆発し、銀や銅と炭素に分解する。
実験室やアセチレンランプなど小規模な用途では、カーバイド法を用いて生成される。これは、カーバイド(炭化カルシウム)に水を作用させる方法である。 工業用の大規模なものでは[2]、アセチレンは炭化水素の熱分解による方法(熱分解法)や、カーバイド法を用いて生成される。: CaC2 + 2H2O → C2H2 + Ca(OH)2
アセチレンガスは他のLPガス等と同様に圧縮冷却すると液化できる。しかしアセチレンは3重結合の極めて不安定な物質なため分解爆発を起こす危険があることから容器内にマスと呼ばれる軽石様の多孔質物質にアセトンを染み込ませ炭酸水のようにアセトンへ溶解させて充填させている。なお、この溶解アセチレン(ボンベ製品)の2008年度日本国内生産量は14,532tである[3]。
燃焼速度が極めて速く燃焼範囲も可燃性ガスの中では一番広い(水素は2番目)ため空気中へ漏洩すると爆発の条件が揃いやすく危険な可燃性ガスでもある。
Names | |
---|---|
IUPAC name
Ethyne
|
|
Systematic IUPAC name
Ethyne[1]
|
|
Identifiers | |
CAS Registry Number
|
74-86-2 Y |
ChEBI | CHEBI:27518 Y |
ChEMBL | ChEMBL116336 Y |
ChemSpider | 6086 Y |
InChI
|
|
Jmol-3D images | Image |
KEGG | C01548 Y |
SMILES
|
|
UNII | OC7TV75O83 Y |
UN number | 1001 (dissolved) 3138 (in mixture with ethylene and propylene) |
Properties | |
Chemical formula
|
C2H2 |
Molar mass | 26.04 g·mol−1 |
Density | 1.097 g/L = 1.097 kg/m3 |
Melting point | −80.8 °C (−113.4 °F; 192.3 K) Triple point at 1.27 atm |
Sublimation
conditions |
−84 °C; −119 °F; 189 K (1 atm) |
Solubility in water
|
slightly soluble |
Vapor pressure | 44.2 atm (20°C)[2] |
Acidity (pKa) | 25[3] |
Structure | |
Molecular shape
|
Linear |
Thermochemistry | |
Std molar
entropy (S |
201 J·mol−1·K−1 |
Std enthalpy of
formation (ΔfH |
+226.88 kJ/mol |
Hazards | |
NFPA 704 |
4
1
3
|
Autoignition
temperature |
300 °C (572 °F; 573 K) |
US health exposure limits (NIOSH): | |
PEL (Permissible)
|
none[2] |
REL (Recommended)
|
C 2500 ppm (2662 mg/m3)[2] |
IDLH (Immediate danger
|
N.D.[2] |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
|
Y verify (what is: Y/N?) | |
Infobox references | |
Acetylene (systematic name: ethyne) is the chemical compound with the formula C2H2. It is a hydrocarbon and the simplest alkyne.[4] This colourless gas is widely used as a fuel and a chemical building block. It is unstable in pure form and thus is usually handled as a solution.[5] Pure acetylene is odourless, but commercial grades usually have a marked odour due to impurities.[6]
As an alkyne, acetylene is unsaturated because its two carbon atoms are bonded together in a triple bond. The carbon–carbon triple bond places all four atoms in the same straight line, with CCH bond angles of 180 °. Since acetylene is a linear symmetrical molecule, it possesses the D∞h point group.[7]
Acetylene was discovered in 1836 by Edmund Davy, who identified it as a "new carburet of hydrogen".[8][9] It was rediscovered in 1860 by French chemist Marcellin Berthelot, who coined the name "acetylene".[10] Berthelot was able to prepare this gas by passing vapours of organic compounds (methanol, ethanol, etc.) through a red-hot tube and collecting the effluent. He also found acetylene was formed by sparking electricity through mixed cyanogen and hydrogen gases. Berthelot later obtained acetylene directly by passing hydrogen between the poles of a carbon arc.[11][12] Commercially available acetylene gas could smell foul due to the common impurities hydrogen sulphide and phosphine. However, acetylene gas with high purity would generate a light and sweet smell.
Today acetylene is mainly manufactured by the partial combustion of methane or appears as a side product in the ethylene stream from cracking of hydrocarbons. Approximately 400,000 tonnes are produced by this method annually.[5] Its presence in ethylene is usually undesirable because of its explosive character and its ability to poison Ziegler-Natta catalysts. It is selectively hydrogenated into ethylene, usually using Pd–Ag catalysts.[13]
Until the 1950s, when oil supplanted coal as the chief source of reduced carbon, acetylene (and the aromatic fraction from coal tar) was the main source of organic chemicals in the chemical industry. It was prepared by the hydrolysis of calcium carbide, a reaction discovered by Friedrich Wöhler in 1862[14] and still familiar to students:
Calcium carbide production requires extremely high temperatures, ~2000 °C, necessitating the use of an electric arc furnace. In the US, this process was an important part of the late-19th century revolution in chemistry enabled by the massive hydroelectric power project at Niagara Falls.[15]
In terms of valence bond theory, in each carbon atom the 2s orbital hybridizes with one 2p orbital thus forming an sp hybrid. The other two 2p orbitals remain unhybridized. The two ends of the two sp hybrid orbital overlap to form a strong σ valence bond between the carbons, while on each of the other two ends hydrogen atoms attach also by σ bonds. The two unchanged 2p orbitals form a pair of weaker π bonds.[16]
At atmospheric pressure, acetylene cannot exist as a liquid and does not have a melting point. The triple point on the phase diagram corresponds to the melting point (−80.8 °C) at the minimum pressure at which liquid acetylene can exist (1.27 atm). At temperatures below the triple point, solid acetylene can change directly to the vapour (gas) by sublimation. The sublimation point at atmospheric pressure is −84 °C.
The adiabatic flame temperature in air at atmospheric pressure is 2534 °C.
Acetylene gas can be dissolved in acetone or dimethylformamide in room temperature and 1 atm.
One new application is the conversion of acetylene to ethylene for use in making a variety of polyethylene plastics. An important reaction of acetylene is its combustion, the basis of the acetylene welding technologies. Otherwise, its major applications involve its conversion to acrylic acid derivatives.[5]
Compared to most hydrocarbons, acetylene is relatively acidic, though it is still much less acidic than water or ethanol. Thus it reacts with strong bases to form acetylide salts. For example, acetylene reacts with sodium amide in liquid ammonia to form sodium acetylide, and with butyllithium in cold THF to give lithium acetylide.[17]
Acetylides of heavy metals are easily formed by reaction of acetylene with the metal ions. Several, e.g., silver acetylide (Ag2C2) and copper acetylide (Cu2C2), are powerful and very dangerous explosives.[18]
Walter Reppe discovered that in the presence of metal catalysts, acetylene can react to give a wide range of industrially significant chemicals.[19][20]
Approximately 20 percent of acetylene is supplied by the industrial gases industry for oxyacetylene gas welding and cutting due to the high temperature of the flame; combustion of acetylene with oxygen produces a flame of over 3,600 K (3,300 °C, 6,000 °F), releasing 11.8 kJ/g. Oxyacetylene is the hottest burning common fuel gas.[22] Acetylene is the third hottest natural chemical flame after dicyanoacetylene's 5260 K (4990 °C, 9010 °F) and cyanogen at 4798 K (4525 °C, 8180 °F). Oxy-acetylene welding was a very popular welding process in previous decades; however, the development and advantages of arc-based welding processes have made oxy-fuel welding nearly extinct for many applications. Acetylene usage for welding has dropped significantly. On the other hand, oxy-acetylene welding equipment is quite versatile – not only because the torch is preferred for some sorts of iron or steel welding (as in certain artistic applications), but also because it lends itself easily to brazing, braze-welding, metal heating (for annealing or tempering, bending or forming), the loosening of corroded nuts and bolts, and other applications. Bell Canada cable repair technicians still use portable acetylene fuelled torch kits as a soldering tool for sealing lead sleeve splices in manholes and in some aerial locations. Oxyacetylene welding may also be used in areas where electricity is not readily accessible. As well, oxy-fuel cutting is still very popular and oxy-acetylene cutting is utilized in nearly every metal fabrication shop. For use in welding and cutting, the working pressures must be controlled by a regulator, since above 15 psi,[23] if subjected to a shockwave (caused for example by a flashback),[24] acetylene will decompose explosively into hydrogen and carbon.
Calcium carbide was used to generate acetylene used in the lamps for portable or remote applications. It was used for miners and cavers before the widespread use of incandescent lighting; or many years later low-power/high-lumen LED lighting; and is still used by mining industries in some nations without workplace safety laws. It was also used as an early light source for lighthouses.
In 1881, the Russian chemist Mikhail Kucherov[25] described the hydration of acetylene to acetaldehyde using catalysts such as mercury(II) bromide. Before the advent of the Wacker process, this reaction was conducted on an industrial scale.[26]
The polymerization of acetylene with Ziegler-Natta catalysts produces polyacetylene films. Polyacetylene, a chain of CH centres with alternating single and double bonds, was the one of first discovered organic semiconductors. Its reaction with iodine produces a highly electrically conducting material. Although such materials are not useful, these discoveries led to the developments of organic semiconductors, as recognized by the Nobel Prize in Chemistry in 2000 to Alan J. Heeger, Alan G MacDiarmid, and Hideki Shirakawa.[5]
In the early 20th Century acetylene was widely used for illumination, including street lighting in some towns.[27] Most early automobiles used carbide lamps before the adoption of electric headlights.
Acetylene is sometimes used for carburization (that is, hardening) of steel when the object is too large to fit into a furnace.[28]
Acetylene is used to volatilize carbon in radiocarbon dating. The carbonaceous material in an archeological sample is treated with lithium metal in a small specialized research furnace to form lithium carbide (also known as lithium acetylide). The carbide can then be reacted with water, as usual, to form acetylene gas to be fed into mass spectrometer to measure the isotopic ratio of carbon-14 to carbon-12.[29]
The energy richness of the C≡C triple bond and the rather high solubility of acetylene in water make it a suitable substrate for bacteria, provided an adequate source is available. A number of bacteria living on acetylene have been identified. The enzyme acetylene hydratase catalyzes the hydration of acetylene to give acetaldehyde.[30]
Acetylene is a moderately common chemical in the universe, often associated with the atmospheres of gas giants.[31] One curious discovery of acetylene is on Enceladus, a moon of Saturn. Natural acetylene is believed to form from catalytic decomposition of long chain hydrocarbons at temperatures of 1,770 K and above. Since such temperatures are highly unlikely on such a small distant body, this discovery is potentially suggestive of catalytic reactions within that moon, making it a promising site to search for prebiotic chemistry.[32][33]
Acetylene is not especially toxic but, when generated from calcium carbide, it can contain toxic impurities such as traces of phosphine and arsine, which give it a distinct garlic-like smell. It is also highly flammable, as most light hydrocarbons, hence its use in welding. Its most singular hazard is associated with its intrinsic instability, especially when it is pressurized: under certain conditions acetylene can react in an exothermic addition-type reaction to form a number of products, typically benzene and/or vinylacetylene, possibly in addition to carbon and hydrogen. Consequently, acetylene, if initiated by intense heat or a shockwave, can decompose explosively if the absolute pressure of the gas exceeds about 200 kPa (29 psi). Most regulators and pressure gauges on equipment report gauge pressure and the safe limit for acetylene therefore is 101 kPagage or 15 psig.[34][35] It is therefore supplied and stored dissolved in acetone or dimethylformamide (DMF),[36] contained in a gas cylinder with a porous filling (Agamassan), which renders it safe to transport and use, given proper handling. Copper catalyses the decomposition of acetylene and as a result acetylene should not be transported in copper pipes. Brass pipe fittings should also be avoided.
Wikiquote has quotations related to: Acetylene |
|
|
|
リンク元 | 「acetylene」 |
関連記事 | 「C2」 |
.