出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2015/09/28 02:20:52」(JST)
This article includes a list of references, related reading or external links, but its sources remain unclear because it lacks inline citations. Please improve this article by introducing more precise citations. (October 2012) |
In statistics, the Bonferroni correction is a method used to counteract the problem of multiple comparisons. It is named after Italian mathematician Carlo Emilio Bonferroni for the use of Bonferroni inequalities,[1] but modern usage is credited to Olive Jean Dunn, who first used it in a pair of articles written in 1959 and 1961.[2][3]
Statistical inference logic is based on rejecting the null hypotheses if the likelihood of the observed data under the null hypotheses is low. The problem of multiplicity arises from the fact that as we increase the number of hypotheses being tested, we also increase the likelihood of a rare event, and therefore, the likelihood of incorrectly rejecting a null hypothesis (i.e., make a Type I error).
The Bonferroni correction is based on the idea that if an experimenter is testing hypotheses, then one way of maintaining the familywise error rate (FWER) is to test each individual hypothesis at a statistical significance level of times what it would be if only one hypothesis were tested.
So, if the desired significance level for the whole family of tests should be (at most) , then the Bonferroni correction would test each individual hypothesis at a significance level of . For example, if a trial is testing eight hypotheses with a desired , then the Bonferroni correction would test each individual hypothesis at .
Statistically significant simply means that a given result is unlikely to have occurred by chance assuming the null hypothesis is actually correct (i.e., no difference among groups, no effect of treatment, no relation among variables).
[dubious – discuss]
Let be a family of hypotheses and the corresponding p-values. Let be the (unknown) subset of the true null hypotheses, having members.
The familywise error rate is the probability of rejecting at least one of the members in ; that is, to make one or more type I error. The Bonferroni Correction states that choosing all will control the . The proof follows from Boole's inequality:
This result does not require that the tests be independent.
We have used the fact that , but the correction can be generalized and applied to any , as long as the weights are defined prior to the test.
Bonferroni correction can be used to adjust confidence intervals. If we are forming confidence intervals, and wish to have overall confidence level of , then adjusting each individual confidence interval to the level of will be the analog confidence interval correction.
There are other alternatives to control the familywise error rate. For example, the Holm–Bonferroni method and the Šidák correction are said to be uniformly more powerful test procedures than the Bonferroni correction.
The Bonferroni correction can be somewhat conservative if there are a large number of tests and/or the test statistics are positively correlated. The correction also comes at the cost of increasing the probability of producing false negatives, and consequently reducing statistical power.
Another criticism concerns the concept of a family of hypotheses. The statistical community has not reached a consensus on how to define such a family. As there is no standard definition, test results may change dramatically, only by modifying the way we consider the hypotheses families.
All of these criticisms, however, apply to adjustments for multiple comparisons in general, and are not specific to the Bonferroni correction.
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
リンク元 | 「Bonferroni補正」「ボンフェローニ補正」 |
関連記事 | 「correction」 |
.