hyperglycinemia

出典: meddic

高グリシン血症グリシン血症

glycinemia


Wikipedia preview

出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2016/05/17 19:49:55」(JST)

wiki en

[Wiki en表示]

UpToDate Contents

全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.

英文文献

  • Analysis of 26 amino acids in human plasma by HPLC using AQC as derivatizing agent and its application in metabolic laboratory.
  • Sharma G1, Attri SV, Behra B, Bhisikar S, Kumar P, Tageja M, Sharda S, Singhi P, Singhi S.Author information 1Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India.AbstractThe present study reports the simultaneous analysis of 26 physiological amino acids in plasma along with total cysteine and homocysteine by high-performance liquid chromatography (HPLC) employing 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) as precolumn derivatizing reagent. Separations were carried out using Lichrospher 100 RP-18e (5 μm) 250 × 4.0 mm column connected to 100 CN 4.0 × 4.0 mm guard column on a quaternary HPLC system and run time was 53 min. Linearity of the peak areas for different concentrations ranging from 2.5 to 100 pmol/μL of individual amino acids was determined. A good linearity (R 2 > 0.998) was achieved in the standard mixture for each amino acid. Recovery of amino acids incorporated at the time of derivatization ranged from 95 to 106 %. Using this method we have established the normative data of amino acids in plasma, the profile being comparable to the range reported in literature and identified cases of classical homocystinuria, cobalamin defect/deficiency, non-ketotic hyperglycinemia, hyperprolinemia, ketotic hyperglycinemia, urea cycle defect and maple syrup urine disease.
  • Amino acids.Amino Acids.2014 Feb 11. [Epub ahead of print]
  • The present study reports the simultaneous analysis of 26 physiological amino acids in plasma along with total cysteine and homocysteine by high-performance liquid chromatography (HPLC) employing 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) as precolumn derivatizing reagent. Separations wer
  • PMID 24515597
  • Progressive myoclonic epilepsies: It takes a village to make a diagnosis.
  • Knupp K1, Wirrell E.Author information 1From the University of Colorado (K.K.), Aurora; and Mayo Clinic (E.W.), Rochester, MN.AbstractThe progressive myoclonus epilepsies (PMEs) are a devastating group of rare disorders(1) that manifest with increasing action myoclonus, which is also present at rest but activates with stimuli such as noise, light, or touch. Ultimately, patients become wheelchair-bound and experience early death. Neurologic signs that frequently but not reliably coexist include other seizure types (particularly generalized tonic-clonic), progressive ataxia, and dementia. Typically, presentation is in late childhood or adolescence; however, all ages may be affected. Although distinction from more common forms of genetic generalized epilepsy, particularly juvenile myoclonic epilepsy, may be challenging early on, the presence or evolution of 1) progressive neurologic disability, 2) failure to respond to antiepileptic drug therapy, and 3) background slowing on EEG should suggest PME. Importantly, inappropriate therapy in the genetic generalized epilepsies may result in ataxia, impaired cognition, and uncontrolled seizures, which may mimic PME. PMEs should be distinguished from progressive encephalopathies with seizures (due to degenerative conditions such as GM2 gangliosidosis, nonketotic hyperglycinemia, Niemann-Pick type C, juvenile Huntington and Alzheimer disease) and progressive myoclonic ataxias, which affect predominantly adults with progressive ataxia, myoclonus, few if any tonic-clonic seizures, and without evidence of dementia.(2,3.)
  • Neurology.Neurology.2014 Feb 4;82(5):378-9. doi: 10.1212/WNL.0000000000000091. Epub 2014 Jan 2.
  • The progressive myoclonus epilepsies (PMEs) are a devastating group of rare disorders(1) that manifest with increasing action myoclonus, which is also present at rest but activates with stimuli such as noise, light, or touch. Ultimately, patients become wheelchair-bound and experience early death. N
  • PMID 24384640
  • Variant non ketotic hyperglycinemia is caused by mutations in LIAS, BOLA3 and the novel gene GLRX5.
  • Baker PR 2nd1, Friederich MW, Swanson MA, Shaikh T, Bhattacharya K, Scharer GH, Aicher J, Creadon-Swindell G, Geiger E, Maclean KN, Lee WT, Deshpande C, Freckmann ML, Shih LY, Wasserstein M, Rasmussen MB, Lund AM, Procopis P, Cameron JM, Robinson BH, Brown GK, Brown RM, Compton AG, Dieckmann CL, Collard R, Coughlin CR 2nd, Spector E, Wempe MF, Van Hove JL.Author information 11 Department of Pediatrics, University of Colorado, Aurora, Colorado, 80045, USA.AbstractPatients with nonketotic hyperglycinemia and deficient glycine cleavage enzyme activity, but without mutations in AMT, GLDC or GCSH, the genes encoding its constituent proteins, constitute a clinical group which we call 'variant nonketotic hyperglycinemia'. We hypothesize that in some patients the aetiology involves genetic mutations that result in a deficiency of the cofactor lipoate, and sequenced genes involved in lipoate synthesis and iron-sulphur cluster biogenesis. Of 11 individuals identified with variant nonketotic hyperglycinemia, we were able to determine the genetic aetiology in eight patients and delineate the clinical and biochemical phenotypes. Mutations were identified in the genes for lipoate synthase (LIAS), BolA type 3 (BOLA3), and a novel gene glutaredoxin 5 (GLRX5). Patients with GLRX5-associated variant nonketotic hyperglycinemia had normal development with childhood-onset spastic paraplegia, spinal lesion, and optic atrophy. Clinical features of BOLA3-associated variant nonketotic hyperglycinemia include severe neurodegeneration after a period of normal development. Additional features include leukodystrophy, cardiomyopathy and optic atrophy. Patients with lipoate synthase-deficient variant nonketotic hyperglycinemia varied in severity from mild static encephalopathy to Leigh disease and cortical involvement. All patients had high serum and borderline elevated cerebrospinal fluid glycine and cerebrospinal fluid:plasma glycine ratio, and deficient glycine cleavage enzyme activity. They had low pyruvate dehydrogenase enzyme activity but most did not have lactic acidosis. Patients were deficient in lipoylation of mitochondrial proteins. There were minimal and inconsistent changes in cellular iron handling, and respiratory chain activity was unaffected. Identified mutations were phylogenetically conserved, and transfection with native genes corrected the biochemical deficiency proving pathogenicity. Treatments of cells with lipoate and with mitochondrially-targeted lipoate were unsuccessful at correcting the deficiency. The recognition of variant nonketotic hyperglycinemia is important for physicians evaluating patients with abnormalities in glycine as this will affect the genetic causation and genetic counselling, and provide prognostic information on the expected phenotypic course.
  • Brain : a journal of neurology.Brain.2014 Feb;137(Pt 2):366-79. doi: 10.1093/brain/awt328. Epub 2013 Dec 11.
  • Patients with nonketotic hyperglycinemia and deficient glycine cleavage enzyme activity, but without mutations in AMT, GLDC or GCSH, the genes encoding its constituent proteins, constitute a clinical group which we call 'variant nonketotic hyperglycinemia'. We hypothesize that in some patients the a
  • PMID 24334290

和文文献

  • Valproic Acid Exacerbated Infantile Spasms and Induced Novel Complex Partial Seizures in an Infant with Non-ketotic Hyperglycinemia
  • Itonaga Tomoyo,Okanari Kazuo,Korematsu Seigo,Kure Shigeo,Izumi Tatsuro
  • Epilepsy & Seizure 7(1), 30-36, 2014
  • … Therefore, non-ketotic hyperglycinemia was diagnosed. … Administration of valproic acid exacerbated the basal infantile spasms and induced novel complex partial seizures, suggesting that the patienthad distinctive clinical seizures due to non-ketotic hyperglycinemia. …
  • NAID 130004679091
  • Paradoxical increase in seizure frequency with valproate in nonketotic hyperglycinemia
  • TSUYUSAKI Yu,SHIMBO Hiroko,WADA Takahito,IAI Mizue,TSUJI Megumi,YAMASHITA Sumimasa,AIDA Noriko,KURE Shigeo,OSAKA Hitoshi
  • Brain & development 34(1), 72-75, 2012-01-01
  • NAID 10031049636
  • 特殊ミルク哺育によるビオチン欠乏症の1例
  • 佐藤 直樹,藤山 幹子,村上 信司,橋本 公二,佐山 浩二,鈴木 由香
  • 西日本皮膚科 74(3), 252-255, 2012
  • 9ヵ月,男児。日齢3日より新生児非ケトン性高グリシン血症と診断され,生後5ヵ月頃より,グリシンを中心に除去された治療用特殊ミルク(雪印乳業S-22<SUP>®</SUP>)で単独哺育されていた。生後7ヵ月頃より,口囲に紅斑が出現,徐々に臀部,前腕,足部にも拡大した。摂取していたミルク中に含まれるビオチンの1日量は0.4μgと極端に少なかったことから,ビオチン0.1mg/da …
  • NAID 130004475454

関連リンク

Hyperglycinemia information including symptoms, diagnosis, misdiagnosis, treatment, causes, patient stories, videos, forums, prevention, and prognosis. ... Hyperglycinemia: Introduction Hyperglycinemia: Increased blood levels of ...
hyperglycinemia /hy·per·gly·cin·e·mia/ (-gli″sĭ-ne?me-ah) excess of glycine in the blood or other body fluids; ketotic h. includes ketotic disorders secondary to a variety of organic acidemias; nonketotic h. is a hereditary disorder of ...

関連画像


押しても画像が表示されない場合はサーバが混雑しています。2週間ほどあけて、再度押下してください。


★リンクテーブル★
リンク元高グリシン血症」「グリシン血症」「glycinemia
拡張検索atypical nonketotic hyperglycinemia

高グリシン血症」

  [★]

hyperglycinemia
グリシン血症非ケトーシス型高グリシン血症


グリシン血症」

  [★]

glycinemiahyperglycinemia
高グリシン血症


glycinemia」

  [★]

グリシン血症

hyperglycinemia


atypical nonketotic hyperglycinemia」

  [★] 非典型非ケトーシス型高グリシン血症




★コメント★

[メモ入力エリア]
※コメント5000文字まで
ニックネーム:
コメント:




表示
個人用ツール


  meddic.jp

リンク
連絡