Ubiquitin carboxyl-terminal esterase L1 (ubiquitin thiolesterase) |
PDB rendering based on 2etl. |
Available structures |
PDB |
Ortholog search: PDBe, RCSB |
List of PDB id codes |
2ETL, 2LEN, 3IFW, 3IRT, 3KVF, 3KW5, 4DM9
|
|
|
Identifiers |
Symbols |
UCHL1 (; PARK5; PGP 9.5; PGP9.5; PGP95; Uch-L1) |
External IDs |
OMIM: 191342 MGI: 103149 HomoloGene: 37894 ChEMBL: 6159 GeneCards: UCHL1 Gene |
EC number |
3.4.19.12 |
Gene Ontology |
Molecular function |
• cysteine-type endopeptidase activity
• ubiquitin thiolesterase activity
• protein binding
• omega peptidase activity
• ligase activity
• alpha-2A adrenergic receptor binding
• ubiquitin binding
|
Cellular component |
• nucleus
• nucleolus
• cytoplasm
• endoplasmic reticulum membrane
• cytosol
• plasma membrane
• axon
• neuronal cell body
|
Biological process |
• ubiquitin-dependent protein catabolic process
• response to stress
• axon target recognition
• adult walking behavior
• cell death
• cell proliferation
• protein deubiquitination
• sensory perception of pain
• axon transport of mitochondrion
• eating behavior
• negative regulation of MAP kinase activity
• muscle fiber development
• neuromuscular process
|
Sources: Amigo / QuickGO |
|
RNA expression pattern |
|
More reference expression data |
Orthologs |
Species |
Human |
Mouse |
|
Entrez |
7345 |
22223 |
|
Ensembl |
ENSG00000154277 |
ENSMUSG00000029223 |
|
UniProt |
P09936 |
Q9R0P9 |
|
RefSeq (mRNA) |
NM_004181 |
NM_011670 |
|
RefSeq (protein) |
NP_004172 |
NP_035800 |
|
Location (UCSC) |
Chr 4:
41.26 – 41.27 Mb |
Chr 5:
66.68 – 66.69 Mb |
|
PubMed search |
[1] |
[2] |
|
|
Ubiquitin carboxy-terminal hydrolase L1 (EC 3.1.2.15, ubiquitin C-terminal hydrolase, UCH-L1) is a deubiquitinating enzyme.
Contents
- 1 Function
- 2 Relevance to neurodegenerative disorders
- 3 Ectopic expression
- 4 Protein structure
- 5 Interactions
- 6 See also
- 7 References
- 8 Further reading
- 9 External links
Function[edit]
UCH-L1 is a member of a gene family whose products hydrolyze small C-terminal adducts of ubiquitin to generate the ubiquitin monomer. Expression of UCH-L1 is highly specific to neurons and to cells of the diffuse neuroendocrine system and their tumors. It is abundantly present in all neurons (accounts for 1-2% of total brain protein), expressed specifically in neurons and testis/ovary.[1][2]
Relevance to neurodegenerative disorders[edit]
A point mutation (I93M) in the gene encoding this protein is implicated as the cause of Parkinson's disease in one German family, although this finding is controversial, as no other Parkinson's disease patients with this mutation have been found[3][4]
Furthermore, a polymorphism (S18Y) in this gene has been found to be associated with a reduced risk for Parkinson's disease. This polymorphism has specifically been shown to have antioxidant activity.[5]
Another potentially protective function of UCH-L1 is its reported ability to stabilize monoubiquitin, an important component of the ubiquitin proteasome system. It is thought that by stabilizing the monomers of ubiquitin and thereby preventing their degradation, UCH-L1 increases the available pool of ubiquitin to be tagged onto proteins destined to be degraded by the proteasome.[6]
The gene is also associated with the Alzheimer's disease, and required for normal synaptic and cognitive function.[7] Loss of Uchl1 increases the susceptibility of pancreatic beta-cells to programmed cell death, indicating that this protein plays a protective role in neuroendocrine cells and illustrating a link between diabetes and neurodegenerative diseases.[8]
Ectopic expression[edit]
Although UCH-L1 protein expression is specific to neurons and testis/ovary tissue, it has been found to be expressed in certain lung-tumor cell lines.[9] This abnormal expression of UCH-L1 is implicated in cancer and has lead to the designation of UCH-L1 as an oncogene.[10]
Protein structure[edit]
Human UCH-L1 and the closely related protein UCHL3 have one of the most complicated knot structure yet discovered for a protein, with five knot crossings. It is speculated that a knot structure may increase a protein's resistance to degradation in the proteasome.[11][12]
Interactions[edit]
Ubiquitin carboxy-terminal hydrolase L1 has been shown to interact with COP9 constitutive photomorphogenic homolog subunit 5.[13]
UCH-L1 has also been shown to interact with α-synuclein, another protein implicated in the pathology of Parkinson disease. This activity is reported to be the result of its ubiquityl ligase activity which may be associated with the I93M pathogenic mutation in the gene.[14]
The conformation of the UCH-L1 protein may also be an important indication of neuroprotection or pathology. For example, the UCH-L1 dimer has been shown to exhibit the potentially pathogenic ligase activity and may lead to the aforementioned increase in aggregation of α-synuclein.[14] The S18Y polymorphism of UCH-L1 has been shown to be less-prone to dimerization.[6]
See also[edit]
- Ubiquitin carboxyl-terminal esterase L3—the gene UCHL3
- Alpha synuclein
- Parkinson disease
References[edit]
- ^ Doran JF, Jackson P, Kynoch PA, Thompson RJ (June 1983). "Isolation of PGP 9.5, a new human neurone-specific protein detected by high-resolution two-dimensional electrophoresis". J. Neurochem. 40 (6): 1542–1547. doi:10.1111/j.1471-4159.1983.tb08124.x. PMID 6343558.
- ^ "Entrez Gene: UCHL1 ubiquitin carboxyl-terminal esterase L1 (ubiquitin thiolesterase)".
- ^ Leroy E, Boyer R, Auburger G, Leube B, Ulm G, Mezey E, Harta G, Brownstein MJ, Jonnalagada S, Chernova T, Dehejia A, Lavedan C, Gasser T, Steinbach PJ, Wilkinson KD, Polymeropoulos MH (October 1998). "The ubiquitin pathway in Parkinson's disease". Nature 395 (6701): 451–2. doi:10.1038/26652. PMID 9774100.
- ^ Harhangi BS, Farrer MJ, Lincoln S, Bonifati V, Meco G, De Michele G, Brice A, Dürr A, Martinez M, Gasser T, Bereznai B, Vaughan JR, Wood NW, Hardy J, Oostra BA, Breteler MM (July 1999). "The Ile93Met mutation in the ubiquitin carboxy-terminal-hydrolase-L1 gene is not observed in European cases with familial Parkinson's disease". Neurosci. Lett. 270 (1): 1–4. PMID 10454131.
- ^ Kyratzi E, Pavlaki M, Stefanis L (July 2008). "The S18Y polymorphic variant of UCH-L1 confers an antioxidant function to neuronal cells". Hum. Mol. Genet. 17 (14): 2160–71. doi:10.1093/hmg/ddn115. PMID 18411255.
- ^ a b Osaka H, Wang YL, Takada K, Takizawa S, Setsuie R, Li H, Sato Y, Nishikawa K, Sun YJ, Sakurai M, Harada T, Hara Y, Kimura I, Chiba S, Namikawa K, Kiyama H, Noda M, Aoki S, Wada K (August 2003). "Ubiquitin carboxy-terminal hydrolase L1 binds to and stabilizes monoubiquitin in neuron". Hum. Mol. Genet. 12 (16): 1945–58. PMID 12913066.
- ^ Gong B, Cao Z, Zheng P, Vitolo OV, Liu S, Staniszewski A, Moolman D, Zhang H, Shelanski M, Arancio O (August 2006). "Ubiquitin hydrolase Uch-L1 rescues beta-amyloid-induced decreases in synaptic function and contextual memory". Cell 126 (4): 775–88. doi:10.1016/j.cell.2006.06.046. PMID 16923396.
- ^ Chu KY, Li H, Wada K, Johnson JD (January 2012). "Ubiquitin C-terminal hydrolase L1 is required for pancreatic beta cell survival and function in lipotoxic conditions". Diabetologia 55 (1): 128–40. doi:10.1007/s00125-011-2323-1. PMID 22038515.
- ^ Liu Y, Lashuel HA, Choi S, Xing X, Case A, Ni J, Yeh LA, Cuny GD, Stein RL, Lansbury PT (September 2003). "Discovery of inhibitors that elucidate the role of UCH-L1 activity in the H1299 lung cancer cell line". Chem. Biol. 10 (9): 837–46. PMID 14522054.
- ^ Hussain S, Foreman O, Perkins SL, Witzig TE, Miles RR, van Deursen J, Galardy PJ (September 2010). "The de-ubiquitinase UCH-L1 is an oncogene that drives the development of lymphoma in vivo by deregulating PHLPP1 and Akt signaling". Leukemia 24 (9): 1641–55. doi:10.1038/leu.2010.138. PMC 3236611. PMID 20574456.
- ^ Peterson, Ivars (2006-10-14). "Knots in proteins". Science News. Archived from the original on 2008-04-21. Retrieved 2008-09-11.
- ^ Virnau P, Mirny LA, Kardar M (September 2006). "Intricate knots in proteins: Function and evolution". PLoS Comput. Biol. 2 (9): e122. doi:10.1371/journal.pcbi.0020122. PMC 1570178. PMID 16978047.
- ^ Caballero OL, Resto V, Patturajan M, Meerzaman D, Guo MZ, Engles J, Yochem R, Ratovitski E, Sidransky D, Jen J (May 2002). "Interaction and colocalization of PGP9.5 with JAB1 and p27(Kip1)". Oncogene 21 (19): 3003–10. doi:10.1038/sj.onc.1205390. PMID 12082530.
- ^ a b Liu Y, Fallon L, Lashuel HA, Liu Z, Lansbury PT (October 2002). "The UCH-L1 gene encodes two opposing enzymatic activities that affect alpha-synuclein degradation and Parkinson's disease susceptibility". Cell 111 (2): 209–18. PMID 12408865.
Further reading[edit]
- Healy DG, Abou-Sleiman PM, Wood NW (2005). "Genetic causes of Parkinson's disease: UCHL-1". Cell Tissue Res. 318 (1): 189–94. doi:10.1007/s00441-004-0917-3. PMID 15221445.
- Rasmussen HH, van Damme J, Puype M, Gesser B, Celis JE, Vandekerckhove J (1993). "Microsequences of 145 proteins recorded in the two-dimensional gel protein database of normal human epidermal keratinocytes". Electrophoresis 13 (12): 960–9. doi:10.1002/elps.11501301199. PMID 1286667.
- Edwards YH, Fox MF, Povey S, Hinks LJ, Thompson RJ, Day IN (1992). "The gene for human neurone specific ubiquitin C-terminal hydrolase (UCHL1, PGP9.5) maps to chromosome 4p14". Ann. Hum. Genet. 55 (Pt 4): 273–8. doi:10.1111/j.1469-1809.1991.tb00853.x. PMID 1840236.
- Honoré B, Rasmussen HH, Vandekerckhove J, Celis JE (1991). "Neuronal protein gene product 9.5 (IEF SSP 6104) is expressed in cultured human MRC-5 fibroblasts of normal origin and is strongly down-regulated in their SV40 transformed counterparts". FEBS Lett. 280 (2): 235–40. doi:10.1016/0014-5793(91)80300-R. PMID 1849484.
- Day IN, Hinks LJ, Thompson RJ (1990). "The structure of the human gene encoding protein gene product 9.5 (PGP9.5), a neuron-specific ubiquitin C-terminal hydrolase". Biochem. J. 268 (2): 521–4. PMC 1131465. PMID 2163617.
- Day IN, Thompson RJ (1987). "Molecular cloning of cDNA coding for human PGP 9.5 protein. A novel cytoplasmic marker for neurones and neuroendocrine cells". FEBS Lett. 210 (2): 157–60. doi:10.1016/0014-5793(87)81327-3. PMID 2947814.
- Doran JF, Jackson P, Kynoch PA, Thompson RJ (1983). "Isolation of PGP 9.5, a new human neurone-specific protein detected by high-resolution two-dimensional electrophoresis". J. Neurochem. 40 (6): 1542–7. doi:10.1111/j.1471-4159.1983.tb08124.x. PMID 6343558.
- Onno M, Nakamura T, Mariage-Samson R, Hillova J, Hill M (1993). "Human TRE17 oncogene is generated from a family of homologous polymorphic sequences by single-base changes". DNA Cell Biol. 12 (2): 107–18. doi:10.1089/dna.1993.12.107. PMID 8471161.
- Larsen CN, Price JS, Wilkinson KD (1996). "Substrate binding and catalysis by ubiquitin C-terminal hydrolases: identification of two active site residues". Biochemistry 35 (21): 6735–44. doi:10.1021/bi960099f. PMID 8639624.
- Best CL, Pudney J, Welch WR, Burger N, Hill JA (1996). "Localization and characterization of white blood cell populations within the human ovary throughout the menstrual cycle and menopause". Hum. Reprod. 11 (4): 790–7. PMID 8671330.
- D'Andrea V, Malinovsky L, Berni A, Biancari F, Biassoni L, Di Matteo FM, Corbellini L, Falvo L, Santoni F, Spyrou M, De Antoni E (1998). "The immunolocalization of PGP 9.5 in normal human kidney and renal cell carcinoma". Il Giornale di chirurgia 18 (10): 521–4. PMID 9435142.
- Larsen CN, Krantz BA, Wilkinson KD (1998). "Substrate specificity of deubiquitinating enzymes: ubiquitin C-terminal hydrolases". Biochemistry 37 (10): 3358–68. doi:10.1021/bi972274d. PMID 9521656.
- Leroy E, Boyer R, Auburger G, Leube B, Ulm G, Mezey E, Harta G, Brownstein MJ, Jonnalagada S, Chernova T, Dehejia A, Lavedan C, Gasser T, Steinbach PJ, Wilkinson KD, Polymeropoulos MH (1998). "The ubiquitin pathway in Parkinson's disease". Nature 395 (6701): 451–2. doi:10.1038/26652. PMID 9774100.
- Wada H, Kito K, Caskey LS, Yeh ET, Kamitani T (1998). "Cleavage of the C-terminus of NEDD8 by UCH-L3". Biochem. Biophys. Res. Commun. 251 (3): 688–92. doi:10.1006/bbrc.1998.9532. PMID 9790970.
- Leroy E, Boyer R, Polymeropoulos MH (1999). "Intron-exon structure of ubiquitin c-terminal hydrolase-L1". DNA Res. 5 (6): 397–400. doi:10.1093/dnares/5.6.397. PMID 10048490.
- Lincoln S, Vaughan J, Wood N, Baker M, Adamson J, Gwinn-Hardy K, Lynch T, Hardy J, Farrer M (1999). "Low frequency of pathogenic mutations in the ubiquitin carboxy-terminal hydrolase gene in familial Parkinson's disease". Neuroreport 10 (2): 427–9. doi:10.1097/00001756-199902050-00040. PMID 10203348.
- Harhangi BS, Farrer MJ, Lincoln S, Bonifati V, Meco G, De Michele G, Brice A, Dürr A, Martinez M, Gasser T, Bereznai B, Vaughan JR, Wood NW, Hardy J, Oostra BA, Breteler MM (1999). "The Ile93Met mutation in the ubiquitin carboxy-terminal-hydrolase-L1 gene is not observed in European cases with familial Parkinson's disease". Neurosci. Lett. 270 (1): 1–4. doi:10.1016/S0304-3940(99)00465-6. PMID 10454131.
- Saigoh K, Wang YL, Suh JG, Yamanishi T, Sakai Y, Kiyosawa H, Harada T, Ichihara N, Wakana S, Kikuchi T, Wada K (1999). "Intragenic deletion in the gene encoding ubiquitin carboxy-terminal hydrolase in gad mice". Nat. Genet. 23 (1): 47–51. doi:10.1038/12647. PMID 10471497.
- Mellick GD, Silburn PA (2000). "The ubiquitin carboxy-terminal hydrolase-L1 gene S18Y polymorphism does not confer protection against idiopathic Parkinson's disease". Neurosci. Lett. 293 (2): 127–30. doi:10.1016/S0304-3940(00)01510-X. PMID 11027850.
- Sharma N, McLean PJ, Kawamata H, Irizarry MC, Hyman BT (2002). "Alpha-synuclein has an altered conformation and shows a tight intermolecular interaction with ubiquitin in Lewy bodies". Acta Neuropathol. 102 (4): 329–34. PMID 11603807.
External links[edit]
- Ubiquitin Carboxy-Terminal Hydrolase at the US National Library of Medicine Medical Subject Headings (MeSH)
PDB gallery
|
|
|
2etl: Crystal Structure of Ubiquitin Carboxy-terminal Hydrolase L1 (UCH-L1)
|
|
|
|
Hydrolase: esterases (EC 3.1)
|
|
3.1.1: Carboxylic ester hydrolases |
- Cholinesterase
- Acetylcholinesterase
- Butyrylcholinesterase
- Pectinesterase
- 6-phosphogluconolactonase
- PAF acetylhydrolase
- Lipase
- Bile salt-dependent
- Gastric/Lingual
- Pancreatic
- Lysosomal
- Hormone-sensitive
- Endothelial
- Hepatic
- Lipoprotein
- Monoacylglycerol
- Diacylglycerol
|
|
3.1.2: Thioesterase |
- Palmitoyl protein thioesterase
- Ubiquitin carboxy-terminal hydrolase L1
|
|
3.1.3: Phosphatase |
- Alkaline phosphatase
- Acid phosphatase (Prostatic)/Tartrate-resistant acid phosphatase/Purple acid phosphatases
- Nucleotidase
- Glucose 6-phosphatase
- Fructose 1,6-bisphosphatase
- Phosphoprotein phosphatase
- OCRL
- Pyruvate dehydrogenase phosphatase
- Fructose 6-P,2-kinase:fructose 2,6-bisphosphatase
- PTEN
- Phytase
- Inositol-phosphate phosphatase
- Phosphoprotein phosphatase: Protein tyrosine phosphatase
- Protein serine/threonine phosphatase
- Dual-specificity phosphatase
|
|
3.1.4: Phosphodiesterase |
- Autotaxin
- Phospholipase
- Sphingomyelin phosphodiesterase
- PDE1
- PDE2
- PDE3
- PDE4A/PDE4B
- PDE5
- Lecithinase (Clostridium perfringens alpha toxin)
- Cyclic nucleotide phosphodiesterase
|
|
3.1.6: Sulfatase |
- arylsulfatase
- Arylsulfatase A
- Arylsulfatase B
- Arylsulfatase E
- Steroid sulfatase
- Galactosamine-6 sulfatase
- Iduronate-2-sulfatase
- N-acetylglucosamine-6-sulfatase
|
|
Nuclease (includes
deoxyribonuclease and
ribonuclease) |
3.1.11-16: Exonuclease |
Exodeoxyribonuclease |
|
|
Exoribonuclease |
|
|
|
3.1.21-31: Endonuclease |
Endodeoxyribonuclease |
- Deoxyribonuclease I
- Deoxyribonuclease II
- Deoxyribonuclease IV
- Restriction enzyme
- UvrABC endonuclease
|
|
Endoribonuclease |
- RNase III
- RNase H
- RNase P
- RNase A
- RNase T1
- RNA-induced silencing complex
|
|
either deoxy- or ribo- |
- Aspergillus nuclease S1
- Micrococcal nuclease
|
|
|
|
- B
- enzm
- 1.1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 10
- 11
- 13
- 14
- 15-18
- 2.1
- 3.1
- 4.1
- 5.1
- 6.1-3
|
|
|
|