出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2014/02/25 22:20:00」(JST)
Look up year in Wiktionary, the free dictionary. |
A year (Old English gēar, Gothic jēr, Runic Jēran) is the orbital period of the Earth moving around the Sun. For an observer on the Earth, this corresponds to the period it takes the Sun to complete one course throughout the zodiac along the ecliptic.
In astronomy, the Julian year is a unit of time, defined as 365.25 days of 86400 SI seconds each (no leap seconds).[1]
There is no universally accepted symbol for the year as a unit of time. The International System of Units does not propose one. A common abbreviation in international use is a (for Latin annus), in English also y or yr.
Due to the Earth's axial tilt, the course of a year sees the passing of the seasons, marked by changes in weather, hours of daylight, and consequently vegetation and fertility. In temperate and subpolar regions, generally four seasons are recognized: spring, summer, autumn and winter, astronomically marked by the Sun reaching the points of equinox and solstice, although the climatic seasons lag behind their astronomical markers. In some tropical and subtropical regions it is more common to speak of the rainy (or wet, or monsoon) season versus the dry season.
A calendar year is an approximation of the Earth's orbital period in a given calendar. A calendar year in the Gregorian calendar (as well as in the Julian calendar) has either 365 (common year) or 366 (leap year) days.
The word "year" is also used of periods loosely associated but not strictly identical with either the astronomical or the calendar year, such as the seasonal year, the fiscal year or the academic year, etc. By extension, the term year can mean the orbital period of any planet: for example, a "Martian year" or "Venerian year" is the time in which Mars or Venus completes its own orbit. The term is also applied more broadly to any long period or cycle, such as the "Great Year".[2]
West Saxon gear (jɛar), Anglian gēr continues Proto-Germanic *jǣram (*jē1ram). Cognates are German Jahr, Old High German jar, Old Norse ár and Gothic jer, all from a PIE *yērom "year, season". Cognates outside of Germanic are Avestan yare "year", Greek ὥρα "year, season, period of time" (whence "hour"), Old Church Slavonic jaru and Latin hornus "of this year".
Latin annus (a 2nd declension masculine noun; annum is the accusative singular; anni is genitive singular and nominative plural; anno the dative and ablative singular) is from a PIE noun *at-no-, which also yielded Gothic aþnam "year".
Both *yē-ro- and *at-no- are based on verbal roots expressing movement, *at- and *ey- respectively, both meaning "to go" generally.
The Greek word for "year", ἔτος, is cognate with Latin vetus "old", from PIE *wetus- "year", also preserved in this meaning in Sanskrit vat-sa- "yearling (calf)" and vat-sa-ras "year".
Derived from Latin annus are a number of English words, such as annual, annuity, anniversary, etc.; per annum means "each year".
A seasonal year is the time between successive recurrences of a seasonal event such as the flooding of a river, the migration of a species of bird, the flowering of a species of plant, the first frost, or the first scheduled game of a certain sport. All of these events can have wide variations of more than a month from year to year.
A calendar year is the time between two dates with the same name in a calendar. A half year (one half of a year) may run from January to June, or July to December.
No astronomical year has an integer number of days or lunar months, so any calendar that follows an astronomical year must have a system of intercalation such as leap years. Financial and scientific calculations often use a 365-day calendar to simplify daily rates.
In the Julian calendar, the average length of a year is 365.25 days. In a non-leap year, there are 365 days, in a leap year there are 366 days. A leap year occurs every four years.
The Gregorian calendar attempts to keep the northward equinox on or shortly before March 21, hence it follows the northward equinox year. The mean length of the year is 365.2425 days (as 97 out of 400 years are leap years); this is within one ppm of the current length of the mean tropical year (365.24219 days). It is estimated that, by the year 4000, the northward equinox will fall back by one day in the Gregorian calendar, not because of this difference, but because of the slowing down of the Earth's rotation and the associated lengthening of the sidereal day.
The Revised Julian calendar, as used in some Eastern Orthodox Churches, also tries to synchronize with the tropical year. The average length of this calendar's year is 365.242222 days (as 218 out of 900 years are leap years). Gregorian and Revised Julian calendars will start to differ in 2800.
The Persian calendar, in use in Afghanistan and Iran, has its year begin on the day of the northward equinox as determined by astronomical computation (for the time zone of Tehran), as opposed to using an algorithmic system of leap years.
A calendar era is used to assign a number to individual years, using a reference point in the past as the beginning of the era. In many countries, the most common era is from the traditional (though now believed incorrect) year of the birth of Jesus. Dates in this era are designated Anno Domini (Latin for "in the year of the Lord"), abbreviated AD, or CE (for "common era"). The year before 1 AD or CE is designated 1 Before Christ (BC) or Before the Common Era (BCE), the year before that 2 BC/BCE, etc. Hence there was no year 0 AD/CE.
When computations involving years are done involving both years AD and years BC, it is common to use Astronomical year numbering, in which 1 BC is designated 0, 2 BC is designated −1, and so on.
Other eras are also used to enumerate the years in different cultural, religious or scientific contexts.
A fiscal year or financial year is a 12-month period used for calculating annual financial statements in businesses and other organizations. In many jurisdictions, regulations regarding accounting require such reports once per twelve months, but do not require that the twelve months constitute a calendar year.
For example, in Canada and India the fiscal year runs from April 1; in the United Kingdom it runs from April 1 for purposes of corporation tax and government financial statements, but from April 6 for purposes of personal taxation and payment of state benefits; in Australia it runs from July 1; while in the United States the fiscal year of the federal government runs from October 1.
An academic year is the annual period during which a student attends an educational institution. The academic year may be divided into academic terms, such as semesters or quarters. The school year in many countries starts in August or September and ends in May, June or July. In Israel the academic year begins around October or November, aligned with the second month of the Hebrew Calendar.
Some schools in the UK and USA divide the academic year into three roughly equal-length terms (called "trimesters" or "quarters" in the USA), roughly coinciding with autumn, winter, and spring. At some, a shortened summer session, sometimes considered part of the regular academic year, is attended by students on a voluntary or elective basis. Other schools break the year into two main semesters, a first (typically August through December) and a second semester (January through May). Each of these main semesters may be split in half by mid-term exams, and each of the halves is referred to as a "quarter" (or "term" in some countries). There may also be a voluntary summer session and/or a short January session.
Some other schools, including some in the United States, have four marking periods. Some schools in the United States, notably Boston Latin School, may divide the year into five or more marking periods. Some state in defense of this that there is perhaps a positive correlation between report frequency and academic achievement.
There are typically 180 days of teaching each year in schools in the USA, excluding weekends and breaks, while 190 days for pupils in state schools in the United Kingdom, New Zealand and Canada.
In India the academic year normally starts from June 1 and ends on May 31. Though schools start closing from mid-March, the actual academic closure is on May 31 and in Nepal it starts from July 15.[citation needed]
Schools and universities in Australia typically have academic years that roughly align with the calendar year (i.e. starting in February or March and ending in October to December), as the southern hemisphere experiences summer from December to February.
The Julian year, as used in astronomy and other sciences, is a time unit defined as exactly 365.25 days. This is the normal meaning of the unit "year" (symbol "a" from the Latin annus) used in various scientific contexts. The Julian century of 36525 days and the Julian millennium of 365250 days are used in astronomical calculations. Fundamentally, expressing a time interval in Julian years is a way to precisely specify how many days (not how many "real" years), for long time intervals where stating the number of days would be unwieldy and unintuitive. By convention, the Julian year is used in the computation of the distance covered by a light-year.
In the Unified Code for Units of Measure, the symbol a (without subscript) always refers to the Julian year aj of exactly 31557600 seconds.
365.25 days of 86400 seconds = 1 a = 1 aj = 31.5576 Ms
The SI multiplier prefixes may be applied to it to form ka (kiloannus), Ma (megaannus) etc.
Each of these three years can be loosely called an 'astronomical year'.
The sidereal year is the time taken for the Earth to complete one revolution of its orbit, as measured against a fixed frame of reference (such as the fixed stars, Latin sidera, singular sidus). Its average duration is 365.256363004 mean solar days (365 d 6 h 9 min 9.76 s) (at the epoch J2000.0 = January 1, 2000, 12:00:00 TT).[3]
Today the tropical year is defined as the period of time for the ecliptic longitude of the Sun to increase by 360 degrees.[4] Since the Sun's ecliptic longitude is measured with respect to the equinox, the tropical year comprises a complete cycle of the seasons; because of the biological and socio-economic importance of the seasons, the tropical year is the basis of most calendars. The modern definition of mean tropical year differs from the actual time between passages of e.g. the northward equinox for several reasons explained below. Because of the Earth's axial precession, this year is about 20 minutes shorter than the sidereal year. The mean tropical year is approximately 365 days, 5 hours, 48 minutes, 45 seconds[5] (= 365.24219 days).
The anomalistic year is the time taken for the Earth to complete one revolution with respect to its apsides. The orbit of the Earth is elliptical; the extreme points, called apsides, are the perihelion, where the Earth is closest to the Sun (January 3 in 2011), and the aphelion, where the Earth is farthest from the Sun (July 4 in 2011). The anomalistic year is usually defined as the time between perihelion passages. Its average duration is 365.259636 days (365 d 6 h 13 min 52.6 s) (at the epoch J2011.0).[6]
If Earth moved in an ideal Kepler orbit, i.e. a perfect ellipse with the Sun fixed at one focus, each kind of year would always have the same duration, and the sidereal and anomalistic years would be equal. Because of perturbations by the gravity of other planets, Earth's motion varies slightly, causing the sidereal and tropical years to vary in length by about 25 minutes (see table below). Both are affected in the same way, so that the sidereal year is consistently 20 minutes longer than the tropical year, provided that they are measured in the same way.
Winter solstice (Atomic time) | Deviation of the following year's duration from the mean value 365.24219 SI days |
---|---|
2007-12-22 06:04:04.2 | +10.51 minutes |
2008-12-21 12:03:19.7 | −11.86 minutes |
2009-12-21 17:40:13.2 | +15.91 minutes |
2010-12-21 23:44:53.2 | −11.94 minutes |
2011-12-22 05:21:41.8 | +3.58 minutes |
2012-12-21 11:14:01.9 | +2.85 minutes |
2013-12-21 17:05:38.3 | +0.86 minutes |
2014-12-21 22:55:15.2 | +0.48 minutes |
An example of a year that will have a duration exceeding the average value of 365.24219 SI days with as much as 24.23 minutes is the one that will begin at winter solstice December 21, 2042 17:47:45.5 (Atomic time).
The draconic year, draconitic year, eclipse year, or ecliptic year is the time taken for the Sun (as seen from the Earth) to complete one revolution with respect to the same lunar node (a point where the Moon's orbit intersects the ecliptic). This period is associated with eclipses: these occur only when both the Sun and the Moon are near these nodes; so eclipses occur within about a month of every half eclipse year. Hence there are two eclipse seasons every eclipse year. The average duration of the eclipse year is
This term is sometimes erroneously used for the draconic or nodal period of lunar precession, that is the period of a complete revolution of the Moon's ascending node around the ecliptic: 18.612815932 Julian years (6798.331019 days; at the epoch J2000.0).
The full moon cycle is the time for the Sun (as seen from the Earth) to complete one revolution with respect to the perigee of the Moon's orbit. This period is associated with the apparent size of the full moon, and also with the varying duration of the synodic month. The duration of one full moon cycle is:
The lunar year comprises twelve full cycles of the phases of the Moon, as seen from Earth. It has a duration of approximately 354.37 days. Muslims use this for celebrating their Eids and for marking the start of the fasting month of Ramadan. A Muslim calendar year is based on the lunar cycle.
The vague year, from annus vagus or wandering year, is an integral approximation to the year equaling 365 days, which wanders in relation to more exact years. Typically the vague year is divided into 12 schematic months of 30 days each plus 5 epagomenal days. The vague year was used in the calendars of Ancient Egypt, Iran, Armenia and in Mesoamerica among the Aztecs and Maya,[7] although the Aztecs and Maya used 18 months of 20 days, plus a 5 day epagomenal month.
A heliacal year is the interval between the heliacal risings of a star. It differs from the sidereal year for stars away from the ecliptic due mainly to the precession of the equinoxes.
The Sothic year is the interval between heliacal risings of the star Sirius. It is currently less than the sidereal year and its duration is very close to the mean Julian year of 365.25 days.
The Gaussian year is the sidereal year for a planet of negligible mass (relative to the Sun) and unperturbed by other planets that is governed by the Gaussian gravitational constant. Such a planet would be slightly closer to the Sun than Earth's mean distance. Its length is:
The Besselian year is a tropical year that starts when the (fictitious) mean Sun reaches an ecliptic longitude of 280°. This is currently on or close to January 1. It is named after the 19th-century German astronomer and mathematician Friedrich Bessel. The following equation can be used to compute the current Besselian epoch (in years):[8]
The TT subscript indicates that for this formula, the Julian date should use the Terrestrial Time scale, or its predecessor, ephemeris time.
This section needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. (October 2012) |
The exact length of an astronomical year changes over time.[9][not in citation given] The main sources of this change are:
Mean year lengths in this section are calculated for 2000, and differences in year lengths, compared to 2000, are given for past and future years. In the tables a day is 86,400 SI seconds long.[10][11][12][13]
Type of year | days | hours | minutes | seconds |
---|---|---|---|---|
tropical | 365 | 5 | 48 | 45 |
sidereal | 365 | 6 | 9 | 10 |
anomalistic | 365 | 6 | 13 | 53 |
eclipse | 346 | 14 | 52 | 55 |
Year | Tropical | Sidereal | Anomalistic | Eclipse |
---|---|---|---|---|
−4000 | −8 | −45 | −15 | −174 |
−2000 | 4 | −19 | −11 | −116 |
0 | 7 | −4 | −5 | −57 |
2000 | 0 | 0 | 0 | 0 |
4000 | −14 | −3 | 5 | 54 |
6000 | −35 | −12 | 10 | 104 |
An average Gregorian year is 365.2425 days = 52.1775 weeks = 8765.82 hours = 525949.2 minutes = 31556952 seconds (mean solar, not SI).
A common year is 365 days = 8760 hours = 525600 minutes = 31536000 seconds.
A leap year is 366 days = 8784 hours = 527040 minutes = 31622400 seconds.
The 400-year cycle of the Gregorian calendar has 146097 days and hence exactly 20871 weeks.
There is no universally accepted symbol for the year as a unit of time. The International System of Units does not propose one. NIST SP811[14] and ISO 80000-3:2006[15] suggest the symbol a, taken from the Latin word annus.[16] In English, the abbreviations "y" or "yr" are sometimes used, specifically in geology and paleontology, where "kyr, myr, byr" (thousands, millions, and billions of years, respectively) and similar abbreviations are used to denote intervals of time remote from the present.[16][17][18]
NIST SP811[19] and ISO 80000-3:2006[20] suggest the symbol a (in the International System of Units, although a is also the symbol for the are, the unit of area used to measure land area, but context is usually enough to disambiguate). In English, the abbreviations y and yr are also used.[16][17][18]
The Unified Code for Units of Measure[21] disambiguates the varying symbologies of ISO 1000, ISO 2955 and ANSI X3.50 [22] by using
A definition jointly adopted by the International Union of Pure and Applied Chemistry and the International Union of Geological Sciences is to use annus, with symbol a, for year, defined as the length of the tropical year in the year 2000:[23][24]
The notation has proved controversial; it conflicts with an earlier convention among geoscientists to use a specifically for "years ago", and y or yr for a one-year time period.[24]
For the following, there are alternative forms which elide the consecutive vowels, such as kilannus, megannus, etc.
In astronomy, geology, and paleontology, the abbreviation yr for "years" and ya for "years ago" are sometimes used, combined with prefixes for "thousand", "million", or "billion".[17][27] They are not SI units, using y to abbreviate English year, but following ambiguous international recommendations, use either the standard English first letters as prefixes (t, m, and b) or metric prefixes (k, M, and G) or variations on metric prefixes (k, m, g). These abbreviations include:
non-SI abbreviation | SI-prefixed equivalent | order of magnitude |
kyr | ka |
|
myr | Ma |
|
byr | Ga |
|
kya or tya | "ka ago" |
Main articles: 1 E10 s, 1 E11 s, and 1 E12 s
|
mya | "Ma ago" |
Main articles: 1 E13 s, 1 E14 s, and 1 E15 s
|
bya or gya | "Ga ago" |
Main articles: 1 E16 s, 1 E17 s, and 1 E18 s
|
Use of "mya" and "bya" is deprecated in modern geophysics, the recommended usage being "Ma" and "Ga" for dates Before Present, but "m.y." for the duration of epochs.[17][18] This ad hoc distinction between "absolute" time and time intervals is somewhat controversial amongst members of the Geological Society of America.[29]
Note that on graphs using "ya" units on the horizontal axis time flows from right to left, which may seem counter-intuitive. If the "ya" units are on the vertical axis, time flows from top to bottom which is probably easier to understand than conventional notation.
The Great year, or Equinoctial cycle corresponds to a complete revolution of the equinoxes around the ecliptic. Its length is about 25,700 years, and cannot be determined precisely as the precession speed is variable.
The Galactic year is the time it takes Earth's solar system to revolve once around the galactic center. It comprises roughly 230 million Earth years.[30]
Time portal |
|
|
.