Structure of an evolutionarily conserved N-terminal domain of syntaxin 1A.[1]
Identifiers
Symbol
Syntaxin
Pfam
PF00804
InterPro
IPR006011
SMART
SM00503
SCOPe
1br0 / SUPFAM
OPM superfamily
197
OPM protein
2xhe
Membranome
349
Available protein structures:
Pfam
structures / ECOD
PDB
RCSB PDB; PDBe; PDBj
PDBsum
structure summary
Syntaxins are a family of membrane integrated Q-SNARE proteins participating in exocytosis.[2]
Contents
1Domains
2Function
3Binding
4Genes
5See also
6References
7External links
Domains
Syntaxins possess a single C-terminal transmembrane domain, a SNARE domain (known as H3), and an N-terminal regulatory domain (Habc).
Syntaxin 17 may have two transmembrane domains.
The SNARE (H3) domain binds to both synaptobrevin and SNAP-25 forming the core SNARE complex. Formation of this stable SNARE core complex is believed to generate the free energy required to initiate fusion between the vesicle membrane and plasma membrane.[3]
The N-terminal Habc domain is formed by 3 α-helices and when collapsed onto its own H3 helix forms an inactive "closed" syntaxin conformation. This closed conformation of syntaxin is believed to be stabilized by binding of Munc-18 (nSec1), although more recent data suggests that nSec1 may bind to other conformations of syntaxin, as well. The "open" syntaxin conformation is the conformation that is competent to form into SNARE core complexes.
Function
Molecular machinery driving exocytosis in neuromediator release. The core SNARE complex is formed by four α-helices contributed by synaptobrevin, syntaxin and SNAP-25, synaptotagmin serves as a Ca2+ sensor and regulates intimately the SNARE zipping.[4]
In vitro syntaxin per se is sufficient to drive spontaneous calcium independent fusion of synaptic vesicles containing v-SNAREs.[5]
More recent and somewhat controversial amperometric data suggest that the transmembrane domain of Syntaxin1A may form part of the fusion pore of exocytosis.[6]
Binding
Syntaxins bind synaptotagmin in a calcium-dependent fashion and interact with voltage dependent calcium and potassium channels via the C-terminal H3 domain. Direct syntaxin-channel interaction is a suitable molecular mechanism for proximity between the fusion machinery and the gates of Ca2+ entry during depolarization of the presynaptic axonal boutons.
The Sec1/Munc18 protein family is known to bind to Syntaxin and regulate Syntaxins machinery. Munc18-1 binds to Syntaxin 1A via two distinct sites referred as N-terminus binding and "closed" conformation that incorporates both the central Habc domain and the SNARE core domain. Munc18-1 binding to the N-terminus of Syntaxin-1 is thought to facilitate Syntaxin-1 interaction with another SNARE, while binding to the "closed" conformation of Syntaxin-1 is believed to be inhibitory.
Recently published data show that alternative spliced Syntaxin 1 (STX1B) which lacks the transmembrane domain localizes in the nuclei.[7]
^Fernandez I, Ubach J, Dulubova I, Zhang X, Südhof TC, Rizo J (Sep 1998). "Three-dimensional structure of an evolutionarily conserved N-terminal domain of syntaxin 1A". Cell. 94 (6): 841–9. doi:10.1016/S0092-8674(00)81742-0. PMID 9753330.
^Bennett MK, García-Arrarás JE, Elferink LA, Peterson K, Fleming AM, Hazuka CD, Scheller RH (Sep 1993). "The syntaxin family of vesicular transport receptors". Cell. 74 (5): 863–73. doi:10.1016/0092-8674(93)90466-4. PMID 7690687.
^Lam AD, Tryoen-Toth P, Tsai B, Vitale N, Stuenkel EL (2008). "SNARE-catalyzed fusion events are regulated by Syntaxin1A-lipid interactions". Molecular Biology of the Cell. 19 (2): 485–97. doi:10.1091/mbc.E07-02-0148. PMC 2230580. PMID 18003982.
^Georgiev DD, Glazebrook JF (2007). "Subneuronal processing of information by solitary waves and stochastic processes". In Lyshevski SE (ed.). Nano and Molecular Electronics Handbook. Nano and Microengineering Series. CRC Press. pp. 17–1–17-41. ISBN 978-0-8493-8528-5.
^Woodbury DJ, Rognlien K (2000). "The t-SNARE syntaxin is sufficient for spontaneous fusion of synaptic vesicles to planar membranes". Cell Biology International. 24 (11): 809–18. doi:10.1006/cbir.2000.0631. PMID 11067766.
^Han X, Wang CT, Bai J, Chapman ER, Jackson MB (Apr 2004). "Transmembrane segments of syntaxin line the fusion pore of Ca2+-triggered exocytosis". Science. 304 (5668): 289–92. doi:10.1126/science.1095801. PMID 15016962.
^Pereira S, Massacrier A, Roll P, Vérine A, Etienne-Grimaldi MC, Poitelon Y, Robaglia-Schlupp A, Jamali S, Roeckel-Trevisiol N, Royer B, Pontarotti P, Lévêque C, Seagar M, Lévy N, Cau P, Szepetowski P (Nov 2008). "Nuclear localization of a novel human syntaxin 1B isoform". Gene. 423 (2): 160–71. doi:10.1016/j.gene.2008.07.010. PMID 18691641.
External links
Syntaxin at the US National Library of Medicine Medical Subject Headings (MeSH)
v
t
e
Membrane protein: vesicular transport proteins (TC 1F)
Synaptic vesicle
SNARE
Q-SNARE
SNAP25
SNAP29
Syntaxin
STX1A
STX1B
STX2
STX3
STX4
STX5
STX6
STX7
STX8
STX10
STX11
STX12
STX16
STX17
STX18
STX19
Munc-18: STXBP1
STXBP2
STXBP3
STXBP4
STXBP5
STXBP6
R-SNARE
Synaptobrevin/VAMP: VAMP1
VAMP2
VAMP3
Synaptotagmin
SYT1
SYT2
SYT3
SYT4
SYT5
SYT6
SYT7
SYT8
SYT9
SYT10
SYT11
SYT12
SYT13
SYT14
SYT15
SYT16
SYT17
Other
Synaptophysin
Synapsin
Small GTPase: RAB3A
COPI
Coatomer
COPA
COPB1
COPB2
COPD/Archain
COPE
COPG
COPG2
COPZ1
COPZ2
Small GTPase: ARF
COPII
Coatomer
SEC23A/SEC24A
SEC13/SEC31
Small GTPase: SAR1A
RME/Clathrin
CLTA
CLTB
CLTC
Caveolae
Caveolin (CAV1
CAV2
CAV3)
Other/ungrouped
Vesicle formation
Adaptor protein complex 1:
AP1AR
AP1B1
AP1G1
AP1G2
AP1M1
AP1M2
AP1S1
AP1S2
AP1S3
Adaptor protein complex 2:
AP2A1
AP2A2
AP2B1
AP2M1
AP2S1
Adaptor protein complex 3:
AP3B1
AP3B2
AP3D1
AP3M1
AP3M2
AP3S1
AP3S2
Adaptor protein complex 4:
AP4B1
AP4E1
AP4M1
AP4S1
LMAN1
LYST
BLOC-1:
DTNBP1
BLOC153
BLOC-2:
HPS3
HPS5
HPS6
BLOC-3:
HPS1
HPS4
Coats:
Retromer
TIP47
Small GTPase
Dynamin
DNM1
DNM2
DNM3
Other
EHD protein family: EHD1
EHD2
EHD3
EHD4
Sorting nexins
Vacuolar protein sorting: VPS13B
VPS33B
SYNRG
See also vesicular transport protein disorders
UpToDate Contents
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
1. 血球貪食リンパ組織球の臨床的特徴および診断 clinical features and diagnosis of hemophagocytic lymphohistiocytosis
4. けいれんの臨床的特徴および評価 clinical features and evaluation of febrile seizures
5. 点頭てんかんの病因および発症機序 etiology and pathogenesis of infantile spasms
English Journal
The powdery mildew resistance protein RPW8.2 is carried on VAMP721/722 vesicles to the extrahaustorial membrane of haustorial complexes.
Kim H1, O'Connell R, Maekawa-Yoshikawa M, Uemura T, Neumann U, Schulze-Lefert P.
The Plant journal : for cell and molecular biology.Plant J.2014 Sep;79(5):835-47. doi: 10.1111/tpj.12591. Epub 2014 Jul 23.
Plants employ multiple cell-autonomous defense mechanisms to impede pathogenesis of microbial intruders. Previously we identified an exocytosis defense mechanism in Arabidopsis against pathogenic powdery mildew fungi. This pre-invasive defense mechanism depends on the formation of ternary protein co
Valosin-containing Protein-interacting Membrane Protein (VIMP) Links the Endoplasmic Reticulum with Microtubules in Concert with Cytoskeleton-linking Membrane Protein (CLIMP)-63.
The Journal of biological chemistry.J Biol Chem.2014 Aug 29;289(35):24304-13. doi: 10.1074/jbc.M114.571372. Epub 2014 Jul 9.
The distribution and morphology of the endoplasmic reticulum (ER) in mammalian cells depend on both dynamic and static interactions of ER membrane proteins with microtubules (MTs). Cytoskeleton-linking membrane protein (CLIMP)-63 is exclusively localized in sheet-like ER membranes, typical structure
Cell-autonomous defense, re-organization and trafficking of membranes in plant-microbe interactions.
Dörmann P1, Kim H, Ott T, Schulze-Lefert P, Trujillo M, Wewer V, Hückelhoven R.
The New phytologist.New Phytol.2014 Aug 28. doi: 10.1111/nph.12978. [Epub ahead of print]
Plant cells dynamically change their architecture and molecular composition following encounters with beneficial or parasitic microbes, a process referred to as host cell reprogramming. Cell-autonomous defense reactions are typically polarized to the plant cell periphery underneath microbial contact