A riffle is a shallow landform in a flowing channel,[1] and it has specific topographic, sedimentary, and hydraulic indicators. These are almost always assessed at a very low discharge compared to the flow that fills the channel[2] (approximately 10–20%), and as a result the water moving over a riffle appears shallow and fast, with a wavy, disturbed water surface. The water's surface over a riffle at low flow also has a much steeper slope than that over other in-channel landforms. Channel sections with a mean water surface slope of roughly 0.1 to 0.5% exhibit riffles, though they can occur in steeper or gentler sloping channels with coarser or finer bed materials, respectively. Except in the period after a flood (when fresh material is deposited on a riffle), the sediment on the riverbed in a riffle is usually much coarser than on that in any other in-channel landform.
Terrestrial valleys normally consist of channels – geometric depressions in the valley floor carved by flowing water – and overbank regions that include floodplains and terraces. Some channels have shapes and sizes that hardly change along the river; these do not have riffles. However, many channels exhibit readily apparent changes in width, bed elevation, and slope. In these cases, scientists realized that the riverbed often tends to rise and fall with distance downstream relative to an average elevation of the river's slope. That led scientists to map the bed elevation down the deepest path in a channel, called the thalweg, to obtain a longitudinal profile. Then, the piecewise linear slope of the river is computed and removed to leave just the rise and fall of the elevation about the channel's trendline. According to the zero-crossing method,[3][4] riffles are all the locations along the channel whose residual elevation is greater than zero. Because of the prevalence of this method for identifying and mapping riffles, riffles are often thought of as part of a paired sequence, alternating with pools- the lows between the riffles. However, modern topographic maps of rivers with meter-scale resolution reveal that rivers exhibit a diversity of in-channel landforms.[5]
For a long time, scientists have observed that, all other things being equal, riffles tend to be substantially wider than other in-channel landforms,[6] but only recently has there been high enough quality of river maps to confirm that this is true.[7] The physics mechanism that explains why this happens is called flow convergence routing.[8][9] This mechanism may be used in river engineering to design self-sustainable riffles,[10][11] given a suitable sediment supply and flow regime. When an in-channel landform is shallow and narrow, instead of shallow and wide, it is called a nozzle.
Riffles are biologically very important, because many aquatic species rely on them in one way or another. Many benthic macroinvertebrates are present in riffles, so fish often locate just downstream of a riffle to wait for these small creatures to drift down to them. That draws fisherman to these natural fish feeding stations as well. Riffles also serve to aerate the water, increasing the amount of dissolved oxygen.[12]
Contents
1Aquaria
2Gold mining
3See also
4References
Aquaria
In the fishkeeping world, a "riffle tank" is one specializing in aquatic life that originates in places with powerful currents like riffles. These are usually emulated with very powerful pumps.[13]
Gold mining
The term is also applied to strips of wood, metal or plastic laid across the washing tables during gravity separation of gold in alluvial or placer mining.
Sluice riffle made of HDPE covered in black sand and gold.
See also
Environment portal
Gold mining
References
^Leopold, Luna; Wolman, M. Gordon (1957). "River channel patterns: Braided, meandering, and straight". Professional Paper 282-B. United States Geological Survey: 50. Cite journal requires |journal= (help)
^Wyrick, J. R.; Senter, A. E.; Pasternack, G. B. (2014-04-01). "Revealing the natural complexity of fluvial morphology through 2D hydrodynamic delineation of river landforms". Geomorphology. 210: 14–22. Bibcode:2014Geomo.210...14W. doi:10.1016/j.geomorph.2013.12.013.
^Milne, J. A. (1982-04-01). "Bed-material size and the riffle-pool sequence". Sedimentology. 29 (2): 267–278. Bibcode:1982Sedim..29..267M. doi:10.1111/j.1365-3091.1982.tb01723.x. ISSN 1365-3091.
^Carling, Paul A.; Orr, Harriet G. (2000-04-01). "Morphology of riffle–pool sequences in the River Severn, England". Earth Surface Processes and Landforms. 25 (4): 369–384. doi:10.1002/(SICI)1096-9837(200004)25:4<353::AID-ESP59>3.0.CO;2-5. ISSN 1096-9837.
^Wyrick, J. R.; Pasternack, G. B. (2014-05-15). "Geospatial organization of fluvial landforms in a gravel–cobble river: Beyond the riffle–pool couplet". Geomorphology. 213: 48–65. Bibcode:2014Geomo.213...48W. doi:10.1016/j.geomorph.2013.12.040.
^Richards, K. S. (1976-06-01). "Channel width and the riffle-pool sequence". GSA Bulletin. 87 (6): 883–890. doi:10.1130/0016-7606(1976)87<883:CWATRS>2.0.CO;2. ISSN 0016-7606.
^Brown, Rocko A.; Pasternack, Gregory B. (2017-01-11). "Bed and width oscillations form coherent patterns in a partially confined, regulated gravel–cobble-bedded river adjusting to anthropogenic disturbances". Earth Surface Dynamics. 5 (1): 1–20. Bibcode:2017ESuD....5....1B. doi:10.5194/esurf-5-1-2017. ISSN 2196-6311.
^MacWilliams, Michael L.; Wheaton, Joseph M.; Pasternack, Gregory B.; Street, Robert L.; Kitanidis, Peter K. (2006-10-01). "Flow convergence routing hypothesis for pool-riffle maintenance in alluvial rivers". Water Resources Research. 42 (10): W10427. Bibcode:2006WRR....4210427M. doi:10.1029/2005WR004391. ISSN 1944-7973.
^Sawyer, April M.; Pasternack, Gregory B.; Moir, Hamish J.; Fulton, Aaron A. (2010-01-15). "Riffle-pool maintenance and flow convergence routing observed on a large gravel-bed river". Geomorphology. 114 (3): 143–160. Bibcode:2010Geomo.114..143S. doi:10.1016/j.geomorph.2009.06.021.
^Wheaton, Joseph M.; Brasington, James; Darby, Stephen E.; Merz, Joseph; Pasternack, Gregory B.; Sear, David; Vericat, Damiá (2010-05-01). "Linking geomorphic changes to salmonid habitat at a scale relevant to fish". River Research and Applications. 26 (4): 469–486. doi:10.1002/rra.1305. ISSN 1535-1467.
^Brown, Rocko A.; Pasternack, Gregory B.; Lin, Tin (2016-04-01). "The Topographic Design of River Channels for Form-Process Linkages". Environmental Management. 57 (4): 929–942. Bibcode:2016EnMan..57..929B. doi:10.1007/s00267-015-0648-0. ISSN 0364-152X. PMID 26707499.
^Gary Chapman (1986). Ambient Aquatic Life Water Quality Criteria for Dissolved Oxygen. U.S. Environmental Protection Agency, Office of Water Regulations and Standards. p. 3.
^Setting up a Riffle Tank, by Cliff Zoller
v
t
e
River morphology
Large-scale features
Drainage basin
Drainage system (geomorphology)
Estuary
Strahler number (stream order)
River valley
River delta
River sinuosity
Alluvial rivers
Anabranch
Avulsion (river)
Bar (river morphology)
Braided river
Channel pattern
Cut bank
Floodplain
Meander
Meander cutoff
Mouth bar
Oxbow lake
Point bar
Riffle
Rapids
Riparian zone
River bifurcation
River channel migration
River mouth
Slip-off slope
Stream pool
Thalweg
Bedrock river
Canyon
Knickpoint
Plunge pool
Bedforms
Ait
Antidune
Dune
Current ripple
Regional processes
Aggradation
Base level
Degradation (geology)
Erosion and tectonics
River rejuvenation
Mechanics
Deposition (geology)
Water erosion
Exner equation
Hack's law
Helicoidal flow
Playfair's law
Sediment transport
List of rivers that have reversed direction
Category
Portal
English Journal
Metaproteomics reveal that rapid perturbations in organic matter prioritize functional restructuring over taxonomy in western Arctic Ocean microbiomes.
Mikan MP, Harvey HR, Timmins-Schiffman E, Riffle M, May DH, Salter I, Noble WS, Nunn BL.
The ISME journal. 2019 Sep;().
We examined metaproteome profiles from two Arctic microbiomes during 10-day shipboard incubations to directly track early functional and taxonomic responses to a simulated algal bloom and an oligotrophic control. Using a novel peptide-based enrichment analysis, significant changes (p-value < 0.0
Goals and Adverse Effects: Rate of Concordance Between Patients and Providers.
Duckworth KE, Morrell R, Russell GB, Powell B, Canzona M, Lichiello S, Riffle O, Tolbert A, McQuellon R.
Journal of oncology practice. 2019 Sep;15(9)e798-e806.
Adequate understanding of the goals and adverse effects of cancer treatment has important implications for patients' decision making, expectations, and mood. This study sought to identify the degree to which patients and clinicians agreed upon the goals and adverse effects of treatment (ie, concorda
Determining Sexual Dimorphism of Living Aquatic Beetles, Stygoparnus comalensis (Coleoptera: Dryopidae) and Heterelmis comalensis (Coleoptera: Elmidae), Using Internal Abdominal Structures.
, K K, E E, E E, .
Journal of insect science (Online). 2019 Jul;19(4).
The Comal Springs dryopid beetle, Stygoparnus comalensis Barr and Spangler, and the Comal Springs riffle beetle, Heterelmis comalensis Bosse, Tuff, and Brown, are protected by the United States Fish and Wildlife Service (USFWS), and the development of a captive self-propagating refuge is of importan