出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2012/10/27 22:57:06」(JST)
Pharmacokinetics may be simply defined as what the body does to the drug, as opposed to pharmacodynamics which may be defined as what the drug does to the body.
Pharmacokinetics, sometimes abbreviated as PK, (from Ancient Greek pharmakon "drug" and kinetikos "to do with motion"; see chemical kinetics) is a branch of pharmacology dedicated to the determination of the fate of substances administered externally to a living organism. The substances of interest include pharmaceutical agents, hormones, nutrients, and toxins.
Pharmacokinetics is often studied in conjunction with pharmacodynamics. Pharmacokinetics includes the study of the mechanisms of absorption and distribution of an administered drug, the rate at which a drug action begins and the duration of the effect, the chemical changes of the substance in the body (e.g. by metabolic enzymes such as CYP or UGT enzymes) and the effects and routes of excretion of the metabolites of the drug.[1]
Contents
|
Pharmacokinetics is divided into several areas including the extent and rate of absorption, distribution, metabolism and excretion. This is commonly referred to as the ADME scheme:
Elimination is the result of metabolism and excretion.
Pharmacokinetics describes how the body affects a specific drug after administration. Pharmacokinetic properties of drugs may be affected by elements such as the site of administration and the dose of administered drug. These may affect the absorption rate.[2]
A fifth process, Liberation has been highlighted as playing an important role in pharmacokinetics:[3][4]
Hence LADME may sometimes be used in place of ADME in reference to the core aspects of pharmacokinetics.
Drugs injected intravenously are removed from the plasma through two primary mechanisms: (1) Distribution to body tissues and (2) metabolism + excretion of the drugs. The resulting decrease of the drug's plasma concentration follows a biphasic pattern (see figure).
Alpha phase: An initial phase of rapid decrease in plasma concentration. The decrease is primarily attributed to drug distribution from the central compartment (circulation) into the peripheral compartments (body tissues). This phase ends when a pseudo-equilibrium of drug concentration is established between the central and peripheral compartments.
Beta phase: A phase of gradual decrease in plasma concentration after the alpha phase. The decrease is primarily attributed to drug metabolism and excretion.[5]
Additional phases (gamma, delta, etc.) are sometimes seen.[6]
The following are the most commonly measured pharmacokinetic metrics:[7]
Characteristic | Description | Example value | Abbreviation(s) | Formula |
---|---|---|---|---|
Dose | Loading dose (LD), or maintenance dose (MD). | 500 mg | design parameter | |
τ | Dosing interval. | 24 h | design parameter | |
Volume of distribution | The apparent volume in which a drug is distributed (i.e. the parameter relating drug concentration to drug amount in the body). | 6.0 L | ||
Concentration | Amount of drug in a given volume of plasma. | 83.3 µg/mL | ||
Elimination half-life | The time required for the concentration of the drug to reach half of its original value. | 12 h | ||
Elimination rate constant | The rate at which drugs are removed from the body. | 0.0578 h-1 | ||
Elimination rate | Rate of infusion required to balance elimination. | 50 mg/h | ||
Area under the curve | The integral of the concentration-time curve (after a single dose or in steady state). | 1320 µg/mL×h |
|
|
Clearance | The volume of plasma cleared of the drug per unit time. | 0.38 L/h | ||
Bioavailability | The systemically available fraction of a drug. | 0.8 | ||
Cmax | The peak plasma concentration of a drug after administration. | 60.9 µg/mL | direct measurement | |
tmax | Time to reach Cmax. | 3.9 h | direct measurement | |
Cmin | The lowest (trough) concentration that a drug reaches before the next dose is administered. | 27.7 µg/mL | direct measurement | |
Fluctuation | Peak trough fluctuation within one dosing interval at steady state | 41.8 % | where |
|
edit |
In pharmacokinetics, steady state refers to the situation where the overall intake of a drug is fairly in dynamic equilibrium with its elimination. In practice, it is generally considered that steady state is reached when a time of 4 to 5 times the half-life for a drug after regular dosing is started.
The following graph depicts a typical time course of drug plasma concentration and illustrates main pharmacokinetic metrics:
Pharmacokinetic analysis is performed by noncompartmental or compartmental methods. Noncompartmental methods estimate the exposure to a drug by estimating the area under the curve of a concentration-time graph. Compartmental methods estimate the concentration-time graph using kinetic models. Noncompartmental methods are often more versatile in that they do not assume any specific compartmental model and produce accurate results also acceptable for bioequivalence studies.
Noncompartmental PK analysis is highly dependent on estimation of total drug exposure. Total drug exposure is most often estimated by area under the curve (AUC) methods, with the trapezoidal rule (numerical integration) the most common method. Due to the dependence on the length of 'x' in the trapezoidal rule, the area estimation is highly dependent on the blood/plasma sampling schedule. That is, the closer time points are, the closer the trapezoids reflect the actual shape of the concentration-time curve.
Compartmental PK analysis uses kinetic models to describe and predict the concentration-time curve. PK compartmental models are often similar to kinetic models used in other scientific disciplines such as chemical kinetics and thermodynamics. The advantage of compartmental over some noncompartmental analyses is the ability to predict the concentration at any time. The disadvantage is the difficulty in developing and validating the proper model. Compartment-free modeling based on curve stripping does not suffer this limitation. The simplest PK compartmental model is the one-compartmental PK model with IV bolus administration and first-order elimination. The most complex PK models (called PBPK models) rely on the use of physiological information to ease development and validation.
Bioanalytical methods are necessary to construct a concentration-time profile. Chemical techniques are employed to measure the concentration of drugs in biological matrix, most often plasma. Proper bioanalytical methods should be selective and sensitive. For example microscale thermophoresis can be used to quantify how the biological matrix/liquid affects the affinity of a drug to its target.[8][9]
Pharmacokinetics is often studied using mass spectrometry because of the complex nature of the matrix (often plasma or urine) and the need for high sensitivity to observe concentrations after a low dose and a long time period. The most common instrumentation used in this application is LC-MS with a triple quadrupole mass spectrometer. Tandem mass spectrometry is usually employed for added specificity. Standard curves and internal standards are used for quantitation of usually a single pharmaceutical in the samples. The samples represent different time points as a pharmaceutical is administered and then metabolized or cleared from the body. Blank samples taken before administration are important in determining background and insuring data integrity with such complex sample matrices. Much attention is paid to the linearity of the standard curve; however it is not uncommon to use curve fitting with more complex functions such as quadratics since the response of most mass spectrometers is less than linear across large concentration ranges.[10][11][12]
There is currently considerable interest in the use of very high sensitivity mass spectrometry for microdosing studies, which are seen as a promising alternative to animal experimentation.[13]
Population pharmacokinetics is the study of the sources and correlates of variability in drug concentrations among individuals who are the target patient population receiving clinically relevant doses of a drug of interest.[14][15][16] Certain patient demographic, pathophysiological, and therapeutical features, such as body weight, excretory and metabolic functions, and the presence of other therapies, can regularly alter dose-concentration relationships. For example, steady-state concentrations of drugs eliminated mostly by the kidney are usually greater in patients suffering from renal failure than they are in patients with normal renal function receiving the same drug dosage. Population pharmacokinetics seeks to identify the measurable pathophysiologic factors that cause changes in the dose-concentration relationship and the extent of these changes so that, if such changes are associated with clinically significant shifts in the therapeutic index, dosage can be appropriately modified. An advantage of population pharmacokinetic modelling is its ability to analyze sparse data sets (sometimes only one concentration measurement per patient is available).
Software packages used in population pharmacokinetics modeling include NONMEM, which was developed at the UCSF.
Ecotoxicology is the study of toxic effects on a wide range of organisms and includes considerations of toxicokinetics and toxicodynamics.[17][18]
Academic licenses are available for most commercial programs.
All model based software above.
Global centres with the highest profiles for providing in-depth training include the Universities of Buffalo, Florida, Gothenburg, Leiden, Otago, San Francisco, Tokyo, Uppsala, Washington, Manchester and University of Sheffield. [19]
|
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
リンク元 | 「薬物動態」「薬動学」「薬物動態学」「PK/PD理論」「薬物速度論」 |
関連記事 | 「pharmacokinetic」 |
A | D | M | E |
吸収 | 分布 | 代謝 | 排出 |
血流量 | 組織血流量 | 肝血流量 | 腎血流量 |
消化管運動 | アルブミン濃度 | 酵素活性 | 尿pH |
消化管pH |
.