- 関
- myristoylation
English Journal
- Myristoylation negative msbB-mutants of probiotic E. coli Nissle 1917 retain tumor specific colonization properties but show less side effects in immunocompetent mice.
- Stritzker J1, Hill PJ, Gentschev I, Szalay AA.Author information 1Genelux Corporation, San Diego, CA, USA.AbstractSpecific colonization of solid tumors by bacteria opens the way to novel approaches in both tumor diagnosis and therapy. However, even non-pathogenic bacteria induce responses by the immune system, which could be devastating for a tumor bearing patient. As such effects are caused e.g., by the lipid A moiety of the lipopolysaccharide, a msbB-mutant of the probiotic E. coli Nissle 1917 strain was investigated. Bacteria of the mutant strain did not show any growth defects in culture media when compared to wild-type E. coli Nissle 1917 but were unable to myristoylate lipid A, had less toxic effects on immunocompetent BALB/c mice, and were still able to specifically colonize tumors. Therefore, the modification of lipid A could result in bacterial strains that might be better suited for diagnosis and therapy of tumors than the corresponding wild-type strains, even if those are not considered pathogenic or are of probiotic background.
- Bioengineered bugs.Bioeng Bugs.2010 Mar-Apr;1(2):139-45. doi: 10.4161/bbug.1.2.10286. Epub 2009 Oct 9.
- Specific colonization of solid tumors by bacteria opens the way to novel approaches in both tumor diagnosis and therapy. However, even non-pathogenic bacteria induce responses by the immune system, which could be devastating for a tumor bearing patient. As such effects are caused e.g., by the lipid
- PMID 21326939
- A role for Saccharomyces cerevisiae fatty acid activation protein 4 in regulating protein N-myristoylation during entry into stationary phase.
- Ashrafi K1, Farazi TA, Gordon JI.Author information 1Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.AbstractSaccharomyces cerevisiae contains four known acyl-CoA synthetases (fatty acid activation proteins, Faaps). Faa1p and Faa4p activate exogenously derived fatty acids. Acyl-CoA metabolism plays a critical role in regulating protein N-myristoylation by the essential enzyme, myristoyl-CoA:protein N-myristoyltransferase (Nmt1p). In this report, we have examined whether Faa1p and Faa4p have distinct roles in affecting protein N-myristoylation as cells transition from growth in rich media to a growth-arrested state during nutrient deprivation (stationary phase). The colony-forming potential of 10 isogenic strains was defined as a function of time spent in stationary phase. These strains contained either a wild type or mutant NMT1 allele, and wild type or null alleles of each FAA. Only the combination of the Nmt mutant (nmt451Dp; reduced affinity for myristoyl-CoA) and loss of Faa4p produced a dramatic loss of colony-forming units (CFU). The progressive millionfold reduction in CFU was associated with a deficiency in protein N-myristoylation that first appeared during logarithmic growth, worsened through the post-diauxic phase, and became extreme in stationary phase. Northern and Western blot analyses plus N-myristoyltransferase assays showed that Nmt is normally present only during the log and diauxic/post-diauxic periods, indicating that N-myristoylproteins present in stationary phase are "inherited" from these earlier phases. Moreover, FAA4 is the only FAA induced during the critical diauxic/early post-diauxic transition. Although substitution of nmt1-451D for NMT1 results in deficiencies in protein N-myristoylation, these deficiencies are modest and limited by compensatory responses that include augmented expression of nmt1-451D and precocious induction of FAA4 in log phase. Loss of Faa4p from nmt1-451D cells severely compromises their capacity to adequately myristoylate Nmt substrates prior to entry into stationary phase since none of the other Faaps are able to functionally compensate for its absence. To identify Nmt1p substrates that may affect maintenance of proliferative potential during stationary phase, we searched the yeast genome for known and putative N-myristoylproteins. Of the 64 genes found, 48 were successfully deleted in NMT1 cells. Removal of any one of the following nine substrates produced a loss of CFU similar to that observed in nmt1-451Dfaa4Delta cells: Arf1p, Arf2p, Sip2p, Van1p, Ptc2p, YBL049W (homology to Snf7p), YJR114W, YKR007W, and YMR077C. These proteins provide opportunities to further define the molecular mechanisms that regulate survival during stationary phase.
- The Journal of biological chemistry.J Biol Chem.1998 Oct 2;273(40):25864-74.
- Saccharomyces cerevisiae contains four known acyl-CoA synthetases (fatty acid activation proteins, Faaps). Faa1p and Faa4p activate exogenously derived fatty acids. Acyl-CoA metabolism plays a critical role in regulating protein N-myristoylation by the essential enzyme, myristoyl-CoA:protein N-myris
- PMID 9748261
- A second mammalian N-myristoyltransferase.
- Giang DK1, Cravatt BF.Author information 1Skaggs Institute for Chemical Biology and Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA.AbstractN-terminal myristoylation is a cotranslational lipid modification common to many signaling proteins that often serves an integral role in the targeting and/or function of these proteins. Myristoylation is catalyzed by an enzyme activity, N-myristoyltransferase (NMT), which transfers myristic acid from myristoyl coenzyme A to the amino group of a protein's N-terminal glycine residue. While a single human NMT cDNA has been isolated and characterized (hNMT-1), biochemical evidence has indicated the presence of several distinct NMTs in vivo, often varying in either apparent molecular weight and/or subcellular distribution. We now report the cloning and characterization of a second, genetically distinct human NMT (hNMT-2), as well as the isolation of the respective mouse NMT homologue for each human enzyme. The mouse and human versions of each NMT are highly homologous, displaying greater than 95% amino acid sequence identity. Comparisons between the NMT-1 and NMT-2 proteins revealed reduced levels of sequence identity (76-77%), indicating that NMT-1 and NMT-2 comprise two distinct families of N-myristoyltransferases. Transient transfection of either the hNMT-1 or hNMT-2 cDNA into COS-7 cells resulted in the expression of high levels of NMT enzyme activity. Both hNMT-1 and hNMT-2 were found to myristoylate several commonly studied peptide substrates with similar, but distinguishable, relative selectivities. Western analysis revealed that while hNMT-2 appeared as a single 65-kDa protein in transfected COS-7 cells, hNMT-1 was processed to provide four distinct protein isoforms ranging from 49 to 68 kDa in size. Collectively, these studies demonstrate a heretofore unappreciated level of genetic complexity underlying the enzymology of N-terminal myristoylation and suggest that the specific inhibition or regulation of either NMT in vivo may in turn allow for the selective control of particular myristoylation-dependent cellular functions.
- The Journal of biological chemistry.J Biol Chem.1998 Mar 20;273(12):6595-8.
- N-terminal myristoylation is a cotranslational lipid modification common to many signaling proteins that often serves an integral role in the targeting and/or function of these proteins. Myristoylation is catalyzed by an enzyme activity, N-myristoyltransferase (NMT), which transfers myristic acid fr
- PMID 9506952
Related Links
- Abstract N-myristoylation is an acylation process absolutely specific to the N-terminal amino acid glycine in proteins. This maturation process concerns about a hundred proteins in lower and higher eukaryotes involved in ...
- Myristoylation is a post-translational protein modification which corresponds to the irreversible covalent linkage of a 14-carbon saturated fatty acid, the myristic acid, to the N-terminal glycine of an eukaryotic or viral protein. It is ...
Related Pictures
★リンクテーブル★
[★]
- 関
- myristoylate