出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2014/09/13 08:53:45」(JST)
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. (December 2011) |
Aneuploidy | |
---|---|
Classification and external resources | |
ICD-10 | Q90-Q98 |
ICD-9 | 758 |
MeSH | D000782 |
Aneuploidy is a condition in which the chromosome number is not an exact multiple of the number characteristic of a particular species. An extra or missing chromosome is a common cause of genetic disorders including human birth defects. Some cancer cells also have abnormal numbers of chromosomes.[1] Aneuploidy originates during cell division when the chromosomes do not separate properly between the two cells. This generally happens when cytokinesis begins while karyokinesis is still under way.
Different species normally have different numbers of chromosomes from one another, and the term "aneuploidy" refers to the chromosome number being different from the usual number for that species.
Chromosome abnormalities occur in 1 of 160 live human births.[clarification needed] Apart from sex chromosome disorders, most cases of aneuploidy result in termination of the developing fetus; the most common extra autosomal chromosomes among live births are 21, 18 and 13.[2]
Every cell in the human body, apart from enucleated red blood cells and the haploid gametes, has 23 pairs of chromosomes (for a total of 46). One copy of each pair is inherited from the mother and the other copy is inherited from the father. The first 22 pairs of chromosomes (referred to as autosomes) are numbered from 1 to 22, and are arranged from largest to smallest in a karyotype (see figure). The 23rd pair of chromosomes are the sex chromosomes. Normal females have two X chromosomes, while normal males have one X chromosome and one Y chromosome.
During meiosis, when germ cells divide to create sperm and egg (gametes), each half should have the same number of chromosomes. But sometimes, the whole pair of chromosomes will end up in one gamete, and the other gamete will not get that chromosome at all.
Most embryos cannot survive with a missing or extra autosome (numbered chromosome) and are spontaneously aborted. The most frequent aneuploidy in humans is trisomy 16, although fetuses affected with the full version of this chromosome abnormality do not survive to term (it is possible for surviving individuals to have the mosaic form, where trisomy 16 exists in some cells but not all). The most common aneuploidy that infants can survive with is trisomy 21, which is found in Down syndrome, affecting 1 in 800 births. Trisomy 18 (Edwards syndrome) affects 1 in 6,000 births, and trisomy 13 (Patau syndrome) affects 1 in 10,000 births. 10% of infants with trisomy 18 or 13 reach 1 year of age.[3]
Changes in chromosome number may not necessarily be present in all cells in an individual. When aneuploidy is detected in a fraction of cells in an individual, it is called chromosomal mosaicism. In general, individuals who are mosaic for a chromosomal aneuploidy tend to have a less severe form of the syndrome compared to those with full trisomy. For many of the autosomal trisomies, only mosaic cases survive to term. However, mitotic aneuploidy may be more common than previously recognized in somatic tissues, and aneuploidy is a characteristic of many types of tumorigenesis (see below).
In the strict sense, a chromosome complement having a number of chromosomes other than 46 (in humans) is considered heteroploid while an exact multiple of the haploid chromosome complement is considered euploid.
Number of chromosomes | Name | Description |
1 | Monosomy | Monosomy refers to lack of one chromosome of the normal complement. Partial monosomy can occur in unbalanced translocations or deletions, in which only a portion of the chromosome is present in a single copy (see deletion (genetics)). Monosomy of the sex chromosomes (45,X) causes Turner syndrome. |
2 | Disomy | Disomy is the presence of two copies of a chromosome. For organisms such as humans that have two copies of each chromosome (those that are diploid), it is the normal condition. For organisms that normally have three or more copies of each chromosome (those that are triploid or above), disomy is an aneuploid chromosome complement. In uniparental disomy, both copies of a chromosome come from the same parent (with no contribution from the other parent). |
3 | Trisomy | Trisomy refers to the presence of three copies, instead of the normal two, of a particular chromosome. The presence of an extra chromosome 21, which is found in Down syndrome, is called trisomy 21. Trisomy 18 and Trisomy 13, known as Edwards Syndrome and Patau Syndrome, respectively, are the two other autosomal trisomies recognized in live-born humans. Trisomy of the sex chromosomes is possible, such as in (47,XXX), (47,XXY), and (47,XYY). |
4/5 | tetrasomy/pentasomy | Tetrasomy and pentasomy are the presence of four or five copies of a chromosome, respectively. Although rarely seen with autosomes, sex chromosome tetrasomy and pentasomy have been reported in humans, including XXXX, XXYY, XXXXX, XXXXY and XYYYY.[4] |
Nondisjunction usually occurs as the result of a weakened mitotic checkpoint, as these checkpoints tend to arrest or delay cell division until all components of the cell are ready to enter the next phase. If a checkpoint is weakened, the cell may fail to 'notice' that a chromosome pair is not lined up on the mitotic plate, for example. In such a case, most chromosomes would separate normally (with one chromatid ending up in each cell), while others could fail to separate at all. This would generate a daughter cell lacking a copy and a daughter cell with an extra copy.
Completely inactive mitotic checkpoints may cause non-disjunction at multiple chromosomes, possibly all. Such a scenario could result in each daughter cell possessing a disjoint set of genetic material.
Merotelic attachment occurs when one kinetochore is attached to both mitotic spindle poles. One daughter cell would have a normal complement of chromosomes; the second would lack one. A third daughter cell may end up with the 'missing' chromosome.
Multipolar spindles: more than two spindle poles form. Such a mitotic division would result in one daughter cell for each spindle pole; each cell may possess an unpredictable complement of chromosomes.
Monopolar spindle: only a single spindle pole forms. This produces a single daughter cell with its copy number doubled.
A tetraploid intermediate may be produced as the end-result of the monopolar spindle mechanism. In such a case, the cell has double the copy number of a normal cell, and produces double the number of spindle poles as well. This results in four daughter cells with an unpredictable complement of chromosomes, but in the normal copy number.
Mosaicism for aneuploid chromosome content may be part of the constitutional make-up of the mammalian brain.[5] In the normal human brain, brain samples from six individuals ranging from 2–86 years of age had mosaicism for chromosome 21 aneuploidy (average of 4% of neurons analyzed).[6] This low-level aneuploidy appears to arise from chromosomal segregation defects during cell division in neuronal precursor cells,[7] and neurons containing such aneuploid chromosome content reportedly integrate into normal circuits.[8]
Aneuploidy is consistently observed in virtually all cancers.[9] Somatic mosaicism occurs in virtually all cancer cells, including trisomy 12 in chronic lymphocytic leukemia (CLL) and trisomy 8 in acute myeloid leukemia (AML). However, these forms of mosaic aneuploidy occur through mechanisms distinct from those typically associated with genetic syndromes involving complete or mosaic aneuploidy, such as chromosomal instability[10] (due to mitotic segregation defects in cancer cells). Therefore the molecular processes that lead to aneuploidy are targets for the development of cancer drugs. Both resveratrol and aspirin have been found in vivo (in mice) to selectively destroy tetraploid cells that may be precursors of aneuploid cells, and activate AMPK, which may be involved in the process.[11]
Alteration of normal mitotic checkpoints are also important tumorogenic events, and these may directly lead to aneuploidy.[12] Loss of tumor suppressor p53 gene often results in genomic instability, which could lead to the aneuploidy genotype.[13]
In addition, genetic syndromes in which an individual is predisposed to breakage of chromosomes (chromosome instability syndromes) are frequently associated with increased risk for various types of cancer, thus highlighting the role of somatic aneuploidy in carcinogenesis. It has been suggested that aneuploidy might directly contribute to carcinogenesis by disrupting the asymmetric division of adult stem cells, thereby leaving those cells capable of "limitless expansion".[14]
The terms "partial monosomy" and "partial trisomy" are used to describe an imbalance of genetic material caused by loss or gain of part of a chromosome. In particular, these terms would be used in the situation of an unbalanced translocation, where an individual carries a derivative chromosome formed through the breakage and fusion of two different chromosomes. In this situation, the individual would have three copies of part of one chromosome (two normal copies and the portion that exists on the derivative chromosome) and only one copy of part of the other chromosome involved in the derivative chromosome.
Agents capable of causing aneuploidy are called aneuploidogens. Many mutagenic carcinogens are aneuploidogens. X-rays, for example, may cause aneuploidy by fragmenting the chromosome; it may also target the spindle apparatus.[15] Other chemicals such as colchicine can also produce aneuploidy by affecting microtubule polymerization.
Germline aneuploidy is typically detected through karyotyping, a process in which a sample of cells is fixed and stained to create the typical light and dark chromosomal banding pattern and a picture of the chromosomes is analyzed. Other techniques include Fluorescence In Situ Hybridization (FISH), quantitative PCR of Short Tandem Repeats, quantitative fluorescence PCR (QF-PCR), quantitative PCR dosage analysis, Quantitative Mass Spectrometry of Single Nucleotide Polymorphisms, and Comparative Genomic Hybridization (CGH).
These tests can also be performed prenatally to detect aneuploidy in a pregnancy, through either amniocentesis or chorionic villus sampling. Pregnant women of 35 years or older are offered prenatal diagnosis because the chance of chromosomal aneuploidy increases as the mother's age increases.
Recent advances have allowed for less invasive testing methods based on the presence of fetal genetic material in maternal blood.
color | significance |
---|---|
lethal | |
normal male phenotype | |
Klinefelter syndrome (abnormal male) | |
polysomy X and/or Y, (abnormal male) | |
normal female phenotype | |
Turner's syndrome (abnormal female) | |
tetrasomy X, pentasomy X, (abnormal female) |
0 | X | XX | XXX | XXXX | XXXXX | |
---|---|---|---|---|---|---|
0 | 00 | X0 | XX | XXX | XXXX | XXXXX |
Y | Y0 | XY | XXY | XXXY | XXXXY | XXXXXY |
YY | YY | XYY | XXYY | XXXYY | XXXXYY | XXXXXYY |
YYY | YYY | XYYY | XXYYY | XXXYYY | XXXXYYY | XXXXXYYY |
YYYY | YYYY | XYYYY | XXYYYY | XXXYYYY | XXXXYYYY | XXXXXYYYY |
YYYYY | YYYYY | XYYYYY | XXYYYYY | XXXYYYYY | XXXXYYYYY | XXXXXYYYYY |
color | significance |
---|---|
case where complete non-mosaic trisomy can never survive to term | |
case where complete non-mosaic trisomy can occasionally (barring other complications) survive to term | |
case where complete non-mosaic trisomy can always (barring other complications) survive to term |
# | monosomy | trisomy |
---|---|---|
1 | 1p36 deletion syndrome 1q21.1 deletion syndrome |
Trisomy 1 |
2 | 2q37 deletion syndrome | Trisomy 2 |
3 | Trisomy 3 | |
4 | Wolf-Hirschhorn syndrome | Trisomy 4 |
5 | Cri du chat 5q deletion syndrome |
Trisomy 5 |
6 | Trisomy 6 | |
7 | Williams syndrome | Trisomy 7 |
8 | Monosomy 8p Monosomy 8q |
Trisomy 8 |
9 | Alfi's syndrome Kleefstra syndrome |
Trisomy 9 |
10 | Monosomy 10p Monosomy 10q |
Trisomy 10 |
11 | Jacobsen syndrome | Trisomy 11 |
12 | Trisomy 12 | |
13 | Patau syndrome | |
14 | Trisomy 14 | |
15 | Angelman syndrome Prader–Willi syndrome |
Trisomy 15 |
16 | Trisomy 16 | |
17 | Miller-Dieker syndrome Smith-Magenis syndrome |
Trisomy 17 |
18 | Distal 18q- Proximal 18q- |
Edwards syndrome |
19 | Trisomy 19 | |
20 | Trisomy 20 | |
21 | Down syndrome | |
22 | DiGeorge syndrome Phelan-McDermid syndrome |
Cat eye syndrome Trisomy 22 |
|
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
リンク元 | 「一染色体」 |
.