Monocot
Temporal range: Early Cretaceous – Recent
PreЄ
Є
O
S
D
C
P
T
J
K
Pg
N
|
|
Wheat, an important monocot |
Scientific classification |
Kingdom: |
Plantae |
(unranked): |
Angiosperms |
(unranked): |
Monocots |
Orders |
-
-
- Acorales
- Alismatales
- Asparagales
- Dioscoreales
- Liliales
- Pandanales
- Petrosaviales
-
- Dasypogonaceae (unplaced)
- Arecales
- Commelinales
- Poales
- Zingiberales
|
Synonyms |
- Monocotyledoneae
- Lilianae Takht.
- Liliatae Cronquist, Takht. & W.Zimm.[a]
- Liliopsida Batsch
|
Monocotyledons ([b][3][4]), more properly referred to as monocots, (Lilianae sensu Chase & Reveal) are flowering plants (angiosperms) whose seeds typically contain only one embryonic leaf, or cotyledon. They constitute one of the major groups into which the flowering plants have traditionally been divided, the rest of the flowering plants having two cotyledons and therefore classified as dicotyledons, or dicots. However, molecular phylogenetic research has shown that while the monocots form a monophyletic group or clade (comprising all the descendants of a common ancestor), the dicots do not. Monocots have almost always been recognized as a group, but with various taxonomic ranks and under several different names. The APG III system of 2009 recognises a clade called "monocots" but does not assign it to a taxonomic rank.
The monocots include about 60,000 species. The largest family in this group (and in the flowering plants as a whole) by number of species are the orchids (family Orchidaceae), with more than 20,000 species. About half as many species belong to the true grasses (Poaceae), who are economically the most important family of monocots. In agriculture the majority of the biomass produced comes from monocots. These include not only major grains (rice, wheat, maize, etc.), but also forage grasses, sugar cane, and the bamboos. Other economically important monocot crops include various palms (Arecaceae), bananas (Musaceae), gingers and their relatives, turmeric and cardamom (Zingiberaceae) and the onions and garlic family (Amaryllidaceae). Additionally most of the horticultural bulbs, plants cultivated for their blooms, are monocots, such as lilies, daffodils, irises, amaryllis, cannas, bluebells and tulips.
Contents
- 1 Description
- 1.1 Comparison with dicotyledons
- 1.2 Vascular system
- 1.3 Synapomorphies
- 2 Taxonomy
- 2.1 Early history
- 2.2 Modern era
- 2.3 Subdivisions
- 2.4 Evolution
- 2.4.1 Molecular clock estimates
- 2.4.2 Core group
- 2.4.3 Aquatic monocots
- 2.4.4 Other taxa
- 2.5 Etymology
- 3 Ecology
- 4 Uses
- 5 Notes
- 6 References
- 7 Bibliography
- 7.1 Books and symposia
- 7.2 Chapters
- 7.3 Articles
- 7.3.1 Phylogenetics
- 7.3.2 APG
- 7.4 Websites and databases
- 8 External links
Description
Allium crenulatum, an onion, with a typical monocot perianth and parallel leaf venation
The monocots or monocotyledons have a single cotyledon, or embryonic leaf, in their seeds. Historically, this feature was used to contrast the monocots with the dicotyledons or dicots which typically have two cotyledons; however modern research has shown that the dicots are not a natural group. From a diagnostic point of view the number of cotyledons is neither a particularly useful characteristic (as they are only present for a very short period in a plant's life), nor is it completely reliable.
Comparison with dicotyledons
Comparison of a monocot (grass) sprouting (left) with a dicot (right), showing hypogeal development in which the cotyledon remains invisible within the seed, underground. The visible part is the first true leaf produced from the meristem; the cotyledon itself remains within the seed.
Slice of onion, showing parallel veins in cross section
Ceroxylon quindiuense (Quindio wax palm) is considered the tallest monocot in the world
The traditionally listed differences between monocotyledons and dicotyledons are as follows. This is a broad sketch only, not invariably applicable, as there are a number of exceptions. The differences indicated are more true for monocots versus eudicots.
Feature |
In monocots |
In dicots |
Growth form |
Mostly herbaceous, occasionally arboraceous |
Herbaceous or arboraceous |
Leaves |
Leaf shape oblong or linear, often sheathed at base, petiole seldom developed, stipules absent. Major leaf veins usually parallel |
Broad, seldom sheathed, petiole common often with stipules. Veins usually reticulate (pinnate or palmate) |
Roots |
Primary root of short duration, replaced by adventitial roots forming fibrous or fleshy root systems |
Develops from the radicle. Primary root often persists forming strong taproot and secondary roots |
Plant stem: Vascular bundles |
Numerous scattered bundles in ground parenchyma, cambium rarely present, no differentiation between cortical and stelar regions |
Ring of primary bundles with cambium, differentiated into cortex and stele |
Flowers |
Parts in threes (trimerous) or multiples of three (e.g. 3, 6 or 9 petals) |
Fours (tetramerous) or fives (pentamerous) |
Pollen: Number of apertures (furrows or pores) |
Monocolpate (single aperture or colpus) |
Tricolpate (three) |
Embryo: Number of cotyledons (leaves in the seed) |
One, endosperm frequently present in seed |
Two, endosperm present or absent |
A number of these differences are not unique to the monocots, and while still useful no one single feature, will infallibly identify a plant as a monocot. For example, trimerous flowers and monosulcate pollen are also found in magnoliids, of which exclusively adventitious roots are found in some of the Piperaceae. Similarly, at least one of these traits, parallel leaf veins, is far from universal among the monocots. Monocots with broad leaves and reticulate leaf veins, typical of dicots, are found in a wide variety of monocot families: for example, Trillium, Smilax (greenbriar), and Pogonia (an orchid), and the Dioscoreales (yams). Potamogeton are one of several monocots with tetramerous flowers. Other plants exhibit a mixture of characteristics. Nymphaeaceae (water lilies) have reticulate veins, a single cotyledon, adventitious roots and a monocot like vascular bundle. These examples reflect their shared ancestry. Nevertheless, this list of traits is a generally valid set of contrasts, especially when contrasting monocots with eudicots rather than non-monocot flowering plants in general.
Vascular system
Stems of two
Roystonea regia palms showing anomalous secondary growth in monocots. Note the characteristic fibrous roots, typical of monocots.
Monocots have a distinctive arrangement of vascular tissue known as an atactostele in which the vascular tissue is scattered rather than arranged in concentric rings. Collenchyma is absent in monocot stems, roots and leaves. Many monocots are herbaceous and do not have the ability to increase the width of a stem (secondary growth) via the same kind of vascular cambium found in non-monocot woody plants. However, some monocots do have secondary growth, and because it does not arise from a single vascular cambium producing xylem inwards and phloem outwards, it is termed "anomalous secondary growth". Examples of large monocots which either exhibit secondary growth, or can reach large sizes without it, are palms (Arecaceae), screwpines (Pandanaceae), bananas (Musaceae), Yucca, Aloe, Dracaena, and Cordyline.
Synapomorphies
By contrast Soltis and others identify thirteen synapomorphies (shared characteristics that unite monophyletic groups of taxa);
- Calcium oxalate raphides
- Absence of vessels in leaves
- Monocotyledonous anther wall formation
- Successive microsporogenesis
- Syncarpous gynoecium
- Parietal placentation
- Monocotyledonous seedling
- Persistent radicle
- Haustorial cotyledon tip
- Open cotyledon sheath
- Steroidal sapanonins
- fly pollination
- diffuse vascular bundles and absence of secondary growth
Taxonomy
The monocots form one of five major lineages of mesangiosperms, which in themselves form 99.95 % of all angiosperms. The monocots and the eudicots, are the largest and most diversified angiosperm lineages accounting for 20 % and 75 % of all angiosperm species respectively. Monocot diversity includes include ornamental flowers (orchids, tulips and lilies) in the lilioid monocots (Asparagales, Liliales respectively), and major grains (maize, rice and wheat) in the grass family (Poales) as well as palm trees (Arecales) in the commelinid monocots.
Early history
Illustrations of cotyledons by John Ray 1682, after Malpighi
The monocots are one of the major divisions of the flowering plants or angiosperms. They have been recognized as a natural group since John Ray's studies of seed structure in the 17th century. Ray was the first botanical systematist, and in his examination of seeds, first observed the dichotomy of cotyledon structure. He reported his findings in a paper read to the Royal Society on 17 December 1674, entitled "A Discourse on the Seeds of Plants".
A Discourse on the Seeds of Plants
The greatest number of plants that come of seed spring at first out of the earth with two leaves which being for the most part of a different figure from the succeeding leaves are by our gardeners not improperly called the seed leaves...
In the first kind the seed leaves are nothing but the two lobes of the seed having their plain sides clapt together like the two halfs of a walnut and therefore are of the just figure of the seed slit in sunder flat wise...
Of seeds that spring out of the earth with leaves like the succeeding and no seed leaves I have observed two sorts. 1. Such as are congenerous to the first kind precedent that is whose pulp is divided into two lobes and a radicle...
2. Such which neither spring out of the ground with seed leaves nor have their pulp divided into lobes
John Ray (1674), pp. 164, 166
Since this paper appeared a year before the publication of Malpighi's Anatome Plantarum (1675–1679), Ray has the priority. At the time, Ray did not fully realise the importance of his discovery but progressively developed this over successive publications. And since these were in Latin, "seed leaves" became folia seminalia and then cotyledon, following Malpighi. Malpighi and Ray were familiar with each other's work, and Malpighi in describing the same structures had introduced the term cotyledon, which Ray adopted in his subsequent writing.
De seminum vegetatione
Mense quoque Maii, alias seminales plantulas Fabarum, & Phaseolorum, ablatis pariter binis seminalibus foliis, seu cotyledonibus, incubandas posui
In the month of May, also, I incubated two seed plants, Faba and Phaseolus, after removing the two seed leaves, or cotyledons
Marcello Malpighi (1679), p. 18
In this experiment, Malpighi also showed that the cotyledons were critical to the development of the plant, proof that Ray required for his theory. In his Methodus plantarum nova Ray also developed and justified the "natural" or pre-evolutionary approach to classification, based on characteristics selected a posteriori in order to group together taxa that have the greatest number of shared characteristics. This approach, also referred to as polythetic would last till evolutionary theory enabled Eichler to develop the phyletic system that superseded it in the late nineteenth century, based on an understanding of the acquisition of characteristics. He also made the crucial observation Ex hac seminum divisione sumum potest generalis plantarum distinctio, eaque meo judicio omnium prima et longe optima, in eas sci. quae plantula seminali sunt bifolia aut διλόβω, et quae plantula sem. adulta analoga. (From this division of the seeds derives a general distinction amongst plants, that in my judgement is first and by far the best, into those seed plants which are bifoliate, or bilobed, and those that are analogous to the adult), that is between monocots and dicots. He illustrated this with by quoting from Malpighi and including reproductions of Malpighi's drawings of cotyledons (see figure). Initially Ray did not develop a classification of flowering plants (florifera) based on a division by the number of cotyledons, but developed his ideas over successive publications, coining the terms Monocotyledones and Dicotyledones in 1703, in the revised version of his Methodus (Methodus plantarum emendata), as a primary method for dividing them, Herbae floriferae, dividi possunt, ut diximus, in Monocotyledones & Dicotyledones (Flowering plants, can be divided, as we have said, into Monocotyledons & Dicotyledons).
Although Linnaeus did not utilise Ray's discovery, basing his own classification solely on floral reproductive morphology, every taxonomist since then, starting with De Jussie and De Candolle, has used Ray's distinction as a major classification characteristic.
Modern era
Modern research based on DNA has confirmed the status of the monocots as a monophyletic group or clade, in contrast to the other historical divisions of the flowering plants, which have had to be substantially reorganized. The monocots form about a quarter of all of the Angiosperms (flowering plants). Of some 60,000 species, by far the largest number (65%) are found in two families, the orchids and grasses. The orchids (Orchidaceae, Asparagales) contain about 25,000 species and the grasses (Poaceae, Poales) about 11,000. Other well known groups within the Poales order include the Cyperaceae (sedges) and Juncaceae (rushes), and the monocots also include familiar families such as the palms (Arecaceae, Arecales) and lilies (Liliaceae, Liliales).
Taxonomists had considerable latitude in naming this group, as the monocots are a group above the rank of family. Article 16 of the ICBN allows either a descriptive name or a name formed from the name of an included family.
Historically, the monocotyledons were named:
- Monocotyledoneae in the de Candolle system and the Engler system
- Monocotyledones in the Bentham & Hooker system and the Wettstein system
- class Liliopsida in the Takhtajan system and the Cronquist system
- subclass Liliidae in the Dahlgren system and the Thorne system (1992)
- clade monocots in the Angiosperm Phylogeny Group (APG) systems: the APG system, the APG II system and the APG III system
Cladogram I: The phylogenetic position of the monocots within the angiosperms, as of APG III (2009) |
|
|
Until the rise of the phylogenetic APG systems, it was widely accepted that angiosperms were neatly split between monocots and dicots, a state reflected in virtually all the systems. It is now understood that various groups, notably the Magnoliids and ancient lineages known as the basal angiosperms fall outside of this dichotomy. Each of these systems uses its own internal taxonomy for the group. The monocotyledons are famous as a group that is extremely stable in its outer borders (it is a well-defined, coherent group), while in its internal taxonomy is extremely unstable (historically no two authoritative systems have agreed with each other on how the monocotyledons are related to each other).[citation needed]
Molecular studies have both confirmed the monophyly of the monocots and helped elucidate relationships within this group. The APG III system does not assign the monocots to a taxonomic rank, instead recognizing a monocots clade. However there has remained some uncertainty regarding the exact relationships between the major lineages, with a number of competing models (including APG).
Subdivisions
Historically, Bentham (1877), considered the monocots to consist of four alliances, Epigynae, Coronariae, Nudiflorae and Glumales, based on floral characteristics. He describes the attempts to subdivide the group since the days of Lindley as largely unsuccessful. Like most subsequent classification systems it failed to distinguish between two major orders, Liliales and Asparagales, now recognised as quite separate. A major advance in this respect was the work of Rolf Dahlgren (1980), which would form the basis of the Angiosperm Phylogeny Group's (APG) subsequent modern classification of monocot families. Dahlgren who used the alternate name Lilliidae considered the monocots as a subclass of angiosperms characterised by a single cotyledon and the presence of triangular protein bodies in the sieve tube plastids. He divided the monocots into seven superorders, Alismatiflorae, Ariflorae, Triuridiflorae, Liliiflorae, Zingiberiflorae, Commeliniflorae and Areciflorae. With respect to the specific issue regarding Liliales and Asparagales, Dahlgren followed Huber (1969) in adopting a splitter approach, in contrast to the longstanding tendency to view Liliaceae as a very broad sensu lato family. Following Dahlgren's untimely death in 1987, his work was continued by his widow, Gertrud Dahlgren, who published a revised version of the classification in 1989. In this scheme the suffix -florae was replaced with -anae (e.g. Alismatanae) and the number of superorders expanded to ten with the addition of Bromelianae, Cyclanthanae and Pandananae.
The APG system establishes ten orders of monocots and two families of monocots (Petrosaviaceae and Dasypogonaceae) not yet assigned to any order. More recently, the Petrosaviaceae has been included in the Petrosaviales, and placed near the lilioid orders. The family Hydatellaceae, assigned to order Poales in the APG II system, has since been recognized as being misplaced in the monocots, and instead proves to be most closely related to the water lilies, family Nymphaeaceae.
Cladogram II: The phylogenetic composition of the monocots. |
monocots |
|
|
Acorales
|
|
|
|
Alismatales
|
|
|
|
Petrosaviales
|
|
|
|
|
|
|
|
Liliales
|
|
|
|
Asparagales
|
|
commelinids |
|
Dasypogonaceae
|
|
|
Arecales
|
|
|
Poales
|
|
|
|
Zingiberales
|
|
|
Commelinales
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Evolution
The monocots form a monophyletic group arising early in the history of the flowering plants, but the fossil record is meagre. The earliest fossils presumed to be monocot remains date from the early Cretaceous period. For a very long time, fossils of palm trees were believed to be the oldest monocots, first appearing 90 million years ago, but this estimate may not be entirely true. At least some putative monocot fossils have been found in strata as old as the eudicots. The oldest fossils that are unequivocally monocots are pollen from the Late Barremian–Aptian – Early Cretaceous period, about 120-110 million years ago, and are assignable to clade-Pothoideae-Monstereae Araceae; being Araceae, sister to other Alismatales.[53] They have also found flower fossils of Triuridaceae (Pandanales) in Upper Cretaceous rocks in New Jersey,[53] becoming the oldest known sighting of saprophytic/mycotrophic habits in angiosperm plants and among the oldest known fossils of monocotyledons.
Topology of the angiosperm phylogenetic tree could infer that the monocots would be among the oldest lineages of angiosperms, which would support the theory that they are just as old as the eudicots. The pollen of the eudicots dates back 125 million years, so the lineage of monocots should be that old too.
Molecular clock estimates
Kåre Bremer, using rbcL sequences and the mean path length method ("mean-path lengths method"), estimated the age of the monocot crown group (i.e. the time at which the ancestor of today's Acorus diverged from the rest of the group) as 134 million years. Similarly, Wikström et al., using Sanderson's non-parametric rate smoothing approach ("nonparametric rate smoothing approach"),[59] obtained ages of 158 or 141 million years for the crown group of monocots.[60] All these estimates have large error ranges (usually 15-20%), and Wikström et al. used only a single calibration point, namely the split between Fagales and Cucurbitales, which was set to 84 Ma, in the late Santonian period). Early molecular clock studies using strict clock models had estimated the monocot crown age to 200 ± 20 million years ago or 160 ± 16 million years, while studies using relaxed clocks have obtained 135-131 million years or 133.8 to 124 million years. Bremer's estimate of 134 million years has been used as a secondary calibration point in other analyses. Some estimates place the emergence of the monocots as far back as 150 mya in the Jurassic period.
Core group
The age of the core group of so-called 'nuclear monocots' or 'core monocots', which correspond to all orders except Acorales and Alismatales, is about 131 million years to present, and crown group age is about 126 million years to the present. The subsequent branching in this part of the tree (i.e. Petrosaviaceae, Dioscoreales + Pandanales and Liliales clades appeared), including the crown Petrosaviaceae group may be in the period around 125–120 million years BC (about 111 million years so far), and stem groups of all other orders, including Commelinidae would have diverged about or shortly after 115 million years. These and many clades within these orders may have originated in southern Gondwana, i.e. Antarctica, Australasia, and southern South America.
Aquatic monocots
The aquatic monocots of Alismatales have commonly been regarded as "primitive". They have also been considered to have the most primitive foliage, which were cross-linked as Dioscoreales and Melanthiales. Keep in mind that the "most primitive" monocot is not necessarily "the sister of everyone else". This is because the ancestral or primitive characters are inferred by means of the reconstruction of characteristic states, with the help of the phylogenetic tree. So primitive characters of monocots may be present in some derived groups. On the other hand, the basal taxa may exhibit many morphological autapomorphies. So although Acoraceae is the sister group to the remaining monocotyledons, the result does not imply that Acoraceae is "the most primitive monocot" in terms of its characteristics. In fact, Acoraceae is highly derived in most morphological characteristics, which is precisely why so many Alismatales Acoraceae occupied relatively imitative positions in trees produced by Chase et al. and others.
Some authors support the idea of an aquatic phase as the origin of monocots. The phylogenetic position of Alismatales (many water), which occupy a relationship with the rest except the Acoraceae, do not rule out the idea, because it could be 'the most primitive monocots' but not 'the most basal'. The Atactostele stem, the long and linear leaves, the absence of secondary growth (see the biomechanics of living in the water), roots in groups instead of a single root branching (related to the nature of the substrate), including sympodial use, are consistent with a water source. However, while monocots were sisters of the aquatic Ceratophyllales, or their origin is related to the adoption of some form of aquatic habit, it would not help much to the understanding of how it evolved to develop their distinctive anatomical features: the monocots seem so different from the rest of angiosperms and it's difficult to relate their morphology, anatomy and development and those of broad-leaved angiosperms.
Other taxa
In the past, taxa which had petiolate leaves with reticulate venation were considered "primitive" within the monocots, because of its superficial resemblance to the leaves of dicotyledons. Recent work suggests that these taxa are sparse in the phylogenetic tree of monocots, such as fleshy fruited taxa (excluding taxa with aril seeds dispersed by ants), the two features would be adapted to conditions that evolved together regardless. Among the taxa involved were Smilax, Trillium (Liliales), Dioscorea (Dioscoreales), etc. A number of these plants are vines that tend to live in shaded habitats for at least part of their lives, and may also have a relationship with their shapeless stomata. Reticulate venation seems to have appeared at least 26 times in monocots, in fleshy fruits 21 times (sometimes lost later), and the two characteristics, though different, showed strong signs of a tendency to be good or bad in tandem, a phenomenon described as "concerted convergence" ("coordinated convergence").
Etymology
The name monocotyledons is derived from the traditional botanical name "Monocotyledones", which refers to the fact that most members of this group have one cotyledon, or embryonic leaf, in their seeds.
Ecology
Emergence
Main articles: Epigeal germination and Hypogeal germination
Some monocots, such as grasses, have hypogeal emergence, where the mesocotyl elongates and pushes the coleoptile (which encloses and protects the shoot tip) toward the soil surface. Since elongation occurs above the cotyledon, it is left in place in the soil where it was planted. Many dicots have epigeal emergence, in which the hypocotyl elongates and becomes arched in the soil. As the hypocotyl continues to elongate, it pulls the cotyledons upward, above the soil surface.
Uses
Of the monocots, the grasses are of enormous economic importance as a source of animal and human food, and form the largest component of agricultural species in terms of biomass produced.
Notes
- ^ In 1964, Takhtajan proposed that classes including Monocotyledons, be formally named with the suffix -atae, so that the principle of typification resulted in Liliatae for monocotyledons . The proposal was formally described in 1966 by Cronquist, Takhtajan and Zimmermann, from which is derived the descriptor "liliates".
- ^ An Anglo-Latin pronunciation. OED: "Monocotyledon"
References
- ^ "Monocotyledon". Merriam-Webster Dictionary.
- ^ "Monocotyledon". Dictionary.com Unabridged. Random House.
- ^ a b Gandolfo, Nixon & Crepet 2002.
- ^ Sanderson 1997.
- ^ Sanderson et al 2004.
Bibliography
Books and symposia
- Arber, Agnes (1925). Monocotyledons: a morphological study. Cambridge: Cambridge University Press.
- Bewley, J.Derek; Black, Michael; Halmer, Peter, eds. (2006). The encyclopedia of seeds: science, technology and uses. Wallingford: CABI. ISBN 978-0-85199-723-0. Retrieved 15 December 2015.
- Birch, Thomas, ed. (1757). The History of the Royal Society of London for Improving of Natural Knowledge from Its First Rise, in which the Most Considerable of Those Papers Communicated to the Society, which Have Hitherto Not Been Published, are Inserted as a Supplement to the Philosophical Transactions, Volume 3. London: Millar.
- Columbus, J. T.; Friar, E. A.; Porter, J. M.; Prince, L. M.; Simpson, M. G., eds. (2006). "Symposium issue: Monocots: comparative biology and evolution (excluding Poales). Proceedings of the Third International Conference on the Comparative Biology of the Monocotyledons, 31 Mar–4 Apr 2003". Aliso (Claremont, Ca.: Rancho Santa Ana Botanic Garden) 22 (1). ISSN 0065-6275. Retrieved 18 January 2014.
- Crane, Peter R.; Blackmore, Stephen, eds. (1989). Evolution, Systematics, and Fossil History of Hamamelidae. vol. I. Oxford: Clarendon Press. Retrieved 14 December 2015.
- Cronquist, Arthur (1981). An integrated system of classification of flowering plants. New York: Columbia University Press. ISBN 978-0-231-03880-5.
- Cronquist, Arthur (1988) [1968]. The evolution and classification of flowering plants (2nd ed.). Bronx, N.Y., USA: New York Botanical Garden. ISBN 9780893273323.
- Dahlgren, Rolf; Clifford, H. T. (1982). The monocotyledons: A comparative study. London and New York: Academic Press. ISBN 9780122006807.
- Dahlgren, R.M.; Clifford, H.T.; Yeo, P.F. (1985). The families of the monocotyledons. Berlin: Springer-Verlag. ISBN 978-3-642-64903-5. Retrieved 10 February 2014.
- Datta, Subhash Chandra (1988). Systematic Botany (4 ed.). New Delhi: New Age Intl. ISBN 81-224-0013-2. Retrieved 25 January 2015.
- Fernholm, Bo; Bremer, Kåre; Jörnvall, Hans, eds. (1989). The hierarchy of life: molecules and morphology in phylogenetic analysis: proceedings from Nobel symposium 70 held at Alfred Nobel's Björkborn, Karlskoga, Sweden, August 29-September 2, 1988. Amsterdam: Excerpta Medica. ISBN 9780444810731.
- Hedges, S. Blair; Kumar, Sudhir, eds. (2009), The timetree of life, Oxford: Oxford University Press, ISBN 9780191560156
- Hutchinson, John (1973). The families of flowering plants, arranged according to a new system based on their probable phylogeny. 2 vols (3rd ed.). Oxford: Oxford University Press.
- Kubitzki, Klaus; Huber, Herbert, eds. (1998). The families and genera of vascular plants. Vol.3. Flowering plants. Monocotyledons: Lilianae (except Orchidaceae). Berlin, Germany: Springer-Verlag. ISBN 3-540-64060-6. Retrieved 14 January 2014.
- Malpighi, Marcello (1675). Anatome plantarum: Cui subjungitur appendix, iteratas & auctas ejusdem authoris de ovo incubato observationes continens (in Latin). London: Johannis Martyn. Retrieved 13 December 2015.
- Malpighi, Marcello (1679). Anatome plantarum: Pars altera (in Latin). London: Johannis Martyn. Retrieved 13 December 2015.
- Pavord, Anna (2005). The naming of names the search for order in the world of plants. New York: Bloomsbury. ISBN 9781596919655. Retrieved 18 February 2015. See also ebook 2010
- Raven, Peter H. Susan E.; Evert, Ray F.; Eichhorn, Susan E. (2013). Biology of plants (8th ed.). New York: W.H. Freeman. ISBN 9781464113512.
- Radosevich, Steven R.; Holt, Jodie S.; Ghersa, Claudio (1997). Weed ecology: implications for management (2nd ed.). New York: J. Wiley. ISBN 0-471-11606-8.
- Raven, Charles E. (1950) [1942]. John Ray, naturalist: his life and works (2nd ed.). Cambridge [England]: Cambridge University Press. ISBN 9780521310833. Retrieved 10 December 2015.
- Ray, John (1682). Methodus plantarum nova: brevitatis & perspicuitatis causa synoptice in tabulis exhibita, cum notis generum tum summorum tum subalternorum characteristicis, observationibus nonnullis de seminibus plantarum & indice copioso (in Latin). London: Faithorne & Kersey.
- Ray, John (1696). De Variis Plantarum Methodis Dissertatio Brevis (in Latin). London: Smith & Walford.
- Ray, John (1703). Methodus plantarum emendata et aucta: In quãa notae maxime characteristicae exhibentur, quibus stirpium genera tum summa, tum infima cognoscuntur & áa se mutuo dignoscuntur, non necessariis omissis. Accedit methodus graminum, juncorum et cyperorum specialis (in Latin). London: Smith & Walford.
- Reed, Barbara, ed. (2008). Plant cryopreservation a practical guide. New York: Springer. ISBN 978-0-387-72276-4.
- Rudall, P.J.; Cribb, P.J.; Cutler, D.F.; Humphries, C.J., eds. (1995). Monocotyledons: systematics and evolution (Proceedings of the International Symposium on Monocotyledons: Systematics and Evolution, Kew 1993). Kew: Royal Botanic Gardens. ISBN 978-0-947643-85-0. Retrieved 14 January 2014.
- Sachs, Julius von (1875). Geschichte der Botanik vom 16. Jahrhundert bis 1860 (in German). Munich: Oldenbourg. Retrieved 13 December 2015.
- Sachs, Julius von (1890) [1875]. Geschichte der Botanik vom 16. Jahrhundert bis 1860 [History of botany (1530-1860)]. translated by Henry E. F. Garnsey, revised by Isaac Bayley Balfour. Oxford: Oxford University Press. doi:10.5962/bhl.title.30585. Retrieved 13 December 2015. , see also History of botany (1530-1860) at Google Books
- Short, Emma; George, Alex (2013). A primer of botanical Latin with vocabulary. New York: Cambridge University Press. ISBN 9781107693753. Retrieved 14 December 2015.
- Smith, Alison M; et al. (2010). Plant biology. New York, NY: Garland Science. ISBN 9780815340256. Retrieved 14 December 2015.
- Stace, Clive A. (1989) [1980]. Plant taxonomy and biosystematics (2nd. ed.). Cambridge: Cambridge University Press. ISBN 978-0-521-42785-2. Retrieved 29 April 2015.
- Stebbins, G. Ledyard (1974). Flowering plants: evolution above the species level. Cambridge, Mass.: Harvard University Press. ISBN 0-674-30685-6. Retrieved 16 December 2015.
- Stuessy, Tod F. (2009). Plant Taxonomy: The Systematic Evaluation of Comparative Data. Columbia University Press. ISBN 0-231-14712-0. Retrieved 6 February 2014.
- Soltis, D.E.; Soltis, P.F.; Endress, P.K.; Chase, M.W. (2005). Phylogeny and evolution of angiosperms. Sunderland, MA: Sinauer. see also Excerpts at Amazon
- Takhtajan, Armen (1991). Evolutionary trends in flowering plants. New York: Columbia University Press. ISBN 9780231073288.
- Takhtajan, Armen Leonovich (2009). Flowering Plants. Springer. ISBN 1-4020-9609-7. Retrieved 7 January 2014.
- Wilkin, Paul; Mayo, Simon J, eds. (2013). Early events in monocot evolution. Cambridge: Cambridge University Press. ISBN 978-1-107-01276-9. Retrieved 9 December 2015.
- Wilson, K. L.; Morrison, D. A., eds. (2000), Monocots: Systematics and evolution (Proceedings of the Second International Conference on the Comparative Biology of the Monocotyledons, Sydney, Australia 1998), Collingwood, Australia: CSIRO, ISBN 0-643-06437-0, retrieved 14 January 2014 Excerpts
Chapters
- Chase, M. W.; Duvall, M. R.; Hills, H. G.; Conran, J. G.; Cox, A. V.; Eguiarte, L. E.; Hartwell, J.; Fay, M. F.; Caddick, L. R.; Cameron, K. M.; Hoot, S. Molecular phylogenetics of Lilianae (PDF). pp. 109–137. , In Rudall et al. (1995).
- Chase, M.W.; Soltis, D. E.; Soltis, P. S.; Rudall, P. J.; Fay, M. F.; Hahn, W. H.; Sullivan, S.; Joseph, J.; Molvray, M.; Kores, P. J.; Givnish, T. J.; Sytsma, K. J.; Pires, J. C. Higher-level systematics of the monocotyledons: An assessment of current knowledge and a new classification. pp. 3–16. , in Wilson & Morrison (2000)
- Donoghue, Michael J.; Doyle, James A. (1989). Phylogenetic studies of seed plants and angiosperms based on morphological characters (PDF). pp. 181–193. , in Fernholm, Bremer & Jörnvall (1989)
- Donoghue, Michael J.; Doyle, James A. (1989). Phylogenetic analysis of angiosperms and the relationships of Hamamelidae (PDF). pp. 17–45. , In Crane & Blackmore (1989)
- Givnish, T.J.; Pires, J.C.; Graham, S.W.; McPherson, M.A.; Prince, L.M.; Patterson, T.B.; Rai, H.S.; Roalson, E.R.; Evans, T.M.; Hahn, W.J; Millam, K.C.; Meerow, A.W.; Molvray, M.; Kores, P.; O'Brien, H.E.; Kress, W.J.; Hall, J.; Sytsma, K.J. Phylogeny of the monocotyledons based on the highly informative plastid gene ndhF: evidence for widespread concerted convergence (PDF). pp. 28–51. Retrieved 4 January 2014. In Columbus et al. (2006)
- Herendeen, P. S.; Crane, P. R. (1995). The fossil history of the monocotyledons. pp. 1–21. In Rudall et al. (1995)
- Kubitzki, K; Rudall, PJ; Chase, MC (1998). Systematics and evolution. pp. 23–33. , In Kubitzki & Huber (1998).
- Panis, Bart (2008). Cryopreservation of monocots. pp. 241–280. doi:10.1007/978-0-387-72276-4_11. , in Reed (2008)
- Ray, John (1674). A discourse on the seeds of plants. pp. 162–169. , in Birch (1757)
- Stevenson, D.W.; Loconte, H. Cladistic analysis of monocot families. pp. 543–578. in Rudall et al. (1995)
- Tomlinson, P. B. (1995). Non-homology of vascular organisation in monocotyledons and dicotyledons. pp. 589–622. In Rudall et al. (1995)
Articles
- Bentham, George (February 1877). "On the Distribution of the Monocotyledonous Orders into Primary Groups, more especially in reference to the Australian Flora, with notes on some points of Terminology.". Journal of the Linnean Society of London, Botany 15 (88): 490–520. doi:10.1111/j.1095-8339.1877.tb00261.x.
- Bremer, K. (2000). "Early Cretaceous lineages of monocot flowering plants" (PDF). Proceedings of the National Academy of Sciences USA 97: 4707–4711. doi:10.1073/pnas.080421597.
- Bremer, K. (2002). "Gondwanan evolution of the grass alliance families (Poales)". Evolution 56: 1374–1387. doi:10.1111/j.0014-3820.2002.tb01451.x.
- Bremer, Kåre; Janssen, Thomas (2006). "Gondwanan origin of major monocot groups inferred from dispersal-vicariance analysis". Aliso 22: 22–27.
- Cameron, K. M.; Dickison, W. C. (1998). "Foliar architecture of vanilloid orchids: Insights into the evolution of reticulate leaf venation in monocots". Bot. J. Linnean Soc. 128: 45–70. doi:10.1006/bojl.1998.0183.
- Chase, Mark W.; Soltis, Douglas E.; Olmstead, Richard G.; Morgan, David; Les, Donald H.; Mishler, Brent D.; Duvall, Melvin R.; Price, Robert A.; Hills, Harold G.; Qiu, Yin-Long; Kron, Kathleen A.; Rettig, Jeffrey H.; Conti, Elena; Palmer, Jeffrey D.; Manhart, James R.; Sytsma, Kenneth J.; Michaels, Helen J.; Kress, W. John; Karol, Kenneth G.; Clark, W. Dennis; Hedren, Mikael; Gaut, Brandon S.; Jansen, Robert K.; Kim, Ki-Joong; Wimpee, Charles F.; Smith, James F.; Furnier, Glenn R.; Strauss, Steven H.; Xiang, Qui-Yun; Plunkett, Gregory M.; Soltis, Pamela S.; Swensen, Susan M.; Williams, Stephen E.; Gadek, Paul A.; Quinn, Christopher J.; Eguiarte, Luis E.; Golenberg, Edward; Learn, Gerald H.; Graham, Sean W.; Barrett, Spencer C. H.; Dayanandan, Selvadurai; Albert, Victor A. (1993). "Phylogenetics of Seed Plants: An Analysis of Nucleotide Sequences from the Plastid Gene rbcL". Annals of the Missouri Botanical Garden 80 (3): 528. doi:10.2307/2399846.
- Clifford, H T (1977). "Quantitative Studies of Inter-relationships Amongst the Liliatae" (PDF). Plant Syst. Evol. Suppl. 1: 77–95. doi:10.1007/978-3-7091-7076-2_6. Retrieved 27 December 2015.
- Cronquist, Arthur; Takhtajan, Armen; Zimmermann, Walter (April 1966). "On the Higher Taxa of Embryobionta". Taxon 15 (4): 129–134. doi:10.2307/1217531. JSTOR 1217531.
- Cronquist, Arthur (April 1969). "Broad Features of the System of Angiosperms". Taxon 18 (2): 188–193. doi:10.2307/1218676. JSTOR 1218676.
- Dahlgren, Gertrud (July 1989). "An updated angiosperm classification". Botanical Journal of the Linnean Society 100 (3): 197–203. doi:10.1111/j.1095-8339.1989.tb01717.x.
- Dahlgren, R. M. T. (February 1980). "A revised system of classification of the angiosperms". Botanical Journal of the Linnean Society 80 (2): 91–124. doi:10.1111/j.1095-8339.1980.tb01661.x.
- Donoghue, Michael J. (2005). "Key innovations, convergence, and success: macroevolutionary lessons from plant phylogeny" (PDF). Paleobiology 31: 77–93. doi:10.1666/0094-8373(2005)031[0077:KICASM]2.0.CO;2.
- Doyle, James A; Donoghue, Michael J (April–June 1992). "Fossils and seed plant phylogeny reanalyzed" (PDF). Brittonia 44 (2): 89106. JSTOR 2806826.
- Fay, Michael F. (May 2013). "Monocots". Botanical Journal of the Linnean Society 172 (1): 1–4. doi:10.1111/boj.12052.
- Friis, E. M.; Pedersen, K. R.; Crane, P. R. (2004). "Araceae from the early Cretaceous of Portugal: Evidence on the emergence of monocotyledons". Proceedings of the National Academy of Sciences 101 (47): 16565–16570. doi:10.1073/pnas.0407174101. PMC 534535. PMID 15546982.
- Friis, E. M.; Pedersen, K. R.; Crane, P. R. (2006). "Cretaceous angiosperm flowers: innovation and evolution in plant reproduction". Palaeogeog. Palaeoclim. Palaeoecol. 232: 251–293. doi:10.1016/j.palaeo.2005.07.006.
- Gandolfo, M. A; Nixon, K. C.; Crepet, W. L.; Stevenson, D. W.; Friis, E. M. (6 August 1998). "Oldest known fossils of monocotyledons". Nature 394 (6693): 532–533. doi:10.1038/28974.
- Gandolfo, M. A.; Nixon, K. C.; Crepet, W. L. (2002). "Triuridaceae fossil flowers from the Upper Cretaceous of New Jersey". American Journal of Botany 89: 1940–1957. doi:10.3732/ajb.89.12.1940.
- Hallier, Hans (31 July 1905). "Provisional scheme of the natural (phylogenetic) system of the flowering plants". New Phytologist 4 (7): 151–162. doi:10.1111/j.1469-8137.1905.tb05894.x.
- Henslow, George (May 1893). "A Theoretical Origin of Endogens from Exogens, through Self-Adaptation to an Aquatic Habit". Botanical Journal of the Linnean Society 29 (204): 485–528. doi:10.1111/j.1095-8339.1893.tb02273.x.
- Herendeen, Patrick S.; Crane, Peter R.; Drinnan, Andrew N. (January 1995). "Fagaceous flowers, fruits, and cupules from the Campanian (Late Cretaceous) of Central Georgia, USA". International Journal of Plant Sciences 156 (1): 93–116. JSTOR 2474901.
- Huber, H (1969). "Die Samenmerkmale und Verwandtschaftsverhältnisse der Liliiflorae". Mitt. Bot. Staatssamml.[Mitteilungen der Botanischen Staatssammlung München] (in German) 8: 219–538. Retrieved 10 February 2015.
- Moore, John P.; Lindsey, George G.; Farrant, Jill M.; Brandt, Wolf F. (2007). "An Overview of the Biology of the Desiccation-tolerant Resurrection Plant Myrothamnus flabellifolia" (PDF). Annals of Botany 99: 211–217. doi:10.1093/aob/mcl269. Retrieved November 3, 2015.
- Sanderson, Michael J. (1997). "A nonparametric approach to estimating divergence times in the absence of rate constancy" (pdf). Molecular Biology and Evolution 14: 1218–1231. doi:10.1093/oxfordjournals.molbev.a025731.
- Sanderson, M. J.; Thorne, J. L.; Wikström, N.; Bremer, K. (2004). "Molecular evidence on plant divergence times". American Journal of Botany 91: 1656–1665. doi:10.3732/ajb.91.10.1656.
- Takhtajan, A. (June 1964). "The Taxa of the Higher Plants above the Rank of Order". Taxon 13 (5): 160–164. doi:10.2307/1216134. JSTOR 10.2307/1216134.
- Thorne, Robert F. (1976). "A phylogenetic classification of the Angiospermae". Evolutionary Biology 9: 35–106. doi:10.1007/978-1-4615-6950-3_2.
- Thorne, R. F. (1992a). "Classification and geography of the flowering plants". The Botanical Review 58 (3): 225–348. doi:10.1007/BF02858611.
- Thorne, R. F. (1992b). "An updated phylogenetic classification of the flowering plants". Aliso 13: 365–389.
- Wikström, Niklas; Savolainen, Vincent; Chase, Mark W. (2001). "Evolution of the angiosperms: calibrating the family tree". Proceedings of the Royal Society of London B 268 (1482): 2211–2220. doi:10.1098/rspb.2001.1782. PMC 1088868. PMID 11674868.
- Zimmermann, Martin H.; Tomlinson, P. B. (June 1972). "The vascular system of monocotyledonous stems". Botanical Gazette 133 (2): 141–155. doi:10.1086/336628.
Phylogenetics
- Cantino, Philip D.; Doyle, James A.; Graham, Sean W.; Judd, Walter S.; Olmstead, Richard G.; Soltis, Douglas E.; Soltis, Pamela S.; Donoghue, Michael J. (2007). "Towards a phylogenetic nomenclature of Tracheophyta" (PDF). Taxon 56 (3): 822–846. doi:10.2307/25065865.
- Chase, Mark W. (2004). "Monocot relationships: an overview". American Journal of Botany 91 (10): 1645–1655. doi:10.3732/ajb.91.10.1645. PMID 21652314.
- Davis, Jerrold I.; Stevenson, Dennis W.; Petersen, Gitte; Seberg, Ole; Campbell, Lisa M.; Freudenstein, John V.; Goldman, Douglas H.; Hardy, Christopher R.; Michelangeli, Fabian A.; Simmons, Mark P.; Specht, Chelsea D.; Vergara-Silva, Francisco; Gandolfo, María (1 July 2004). "A Phylogeny of the Monocots, as Inferred from rbcL and atpA Sequence Variation, and a Comparison of Methods for Calculating Jackknife and Bootstrap Values" (PDF). Systematic Botany 29 (3): 467–510. doi:10.1600/0363644041744365.
- Duvall, Melvin R.; Clegg, Michael T.; Chase, Mark W.; Clark, W. Dennis; Kress, W. John; Hills, Harold G.; Eguiarte, Luis E.; Smith, James F.; Gaut, Brandon S.; Zimmer, Elizabeth A.; Learn, Gerald H. (1 January 1993). "Phylogenetic Hypotheses for the Monocotyledons Constructed from rbcL Sequence Data". Annals of the Missouri Botanical Garden 80 (3): 607–619. doi:10.2307/2399849.
- Givnish, Thomas J.; Pires, J.Chris; Graham, Sean W.; McPherson, Marc A.; Prince, Linda M.; Patterson, Thomas B.; Rai, Hardeep S.; Roalson, Eric H.; Evans, Timothy M.; Hahn, William J; Millam, Kendra C.; Meerow, Alan W; Molvray, Mia; Kores, Paul J.; O'Brien, Heath E.; Hall, Jocelyn C.; Kress, W. John; Sytsma, Kenneth J. (2005). "Repeated evolution of net venation and fleshy fruits among monocots in shaded habitats confirms a priori predictions: evidence from an ndhF phylogeny". Proceedings of the Royal Society B: Biological Sciences 272 (1571): 1481–1490. doi:10.1098/rspb.2005.3067. PMC 1559828. PMID 16011923.
- Givnish, Thomas J.; Ames, Mercedes; McNeal, Joel R.; McKain, Michael R.; Steele, P. Roxanne; dePamphilis, Claude W.; Graham, Sean W.; Pires, J. Chris; Stevenson, Dennis W.; Zomlefer, Wendy B.; Briggs, Barbara G.; Duvall, Melvin R.; Moore, Michael J.; Heaney, J. Michael; Soltis, Douglas E.; Soltis, Pamela S.; Thiele, Kevin; Leebens-Mack, James H. (27 December 2010). "Assembling the Tree of the Monocotyledons: Plastome Sequence Phylogeny and Evolution of Poales". Annals of the Missouri Botanical Garden 97 (4): 584–616. doi:10.3417/2010023.
- Janssen, Thomas; Bremer, Kare (December 2004). "The age of major monocot groups inferred from 800+ rbcL sequences" (PDF). Botanical Journal of the Linnean Society 146 (4): 385–398. doi:10.1111/j.1095-8339.2004.00345.x.
- Leebens-Mack, Jim; Raubeson, Linda A.; Cui, Liying; Kuehl, Jennifer V.; Fourcade, Mathew H.; Chumley, Timothy W.; Boore, Jeffrey L.; Jansen, Robert K.; dePamphilis, Claude W. (October 2005). "Identifying the basal angiosperm node in chloroplast genome phylogenies: Sampling one's way out of the Felsenstein zone". Mol. Biol. Evol. 22 (10): 1948–1963. doi:10.1093/molbev/msi191. PMID 15944438.
- Loconte, Henry; Stevenson, Dennis W. (September 1991). "Cladistics of the Magnoliidae". Cladistics 7 (3): 267–296. doi:10.1111/j.1096-0031.1991.tb00038.x.
- Patterson, T. B.; Givnish, T. J. (2002). "Phylogeny, concerted convergence, and phylogenetic niche conservatism in the core Liliales: insights from rbcL and ndhF sequence data" (PDF). Evolution 56 (2): 233–252. doi:10.1111/j.0014-3820.2002.tb01334.x. PMID 11926492. Retrieved 14 January 2014.
- Savard, L.; Strauss, S. H.; Chase, M. W.; Michaud, M.; Bosquet, J. (May 1994). "Chloroplast and nuclear gene sequences indicate late Pennsylvanian time for the last common ancestor of extant seed plants". Proceedings of the National Academy of Sciences of the United States of America 91 (11): 5163–5167. doi:10.1073/pnas.91.11.5163.
- Soltis, Pamela S; Soltis, Douglas E (2004). "The origin and diversification of angiosperms". American Journal of Botany 91 (10): 1614–1626. doi:10.3732/ajb.91.10.1614. PMID 21652312.
- Soltis, D. E.; Smith, S. A.; Cellinese, N.; Wurdack, K. J.; Tank, D. C.; Brockington, S. F.; Refulio-Rodriguez, N. F.; Walker, J. B.; Moore, M. J.; Carlsward, B. S.; Bell, C. D.; Latvis, M.; Crawley, S.; Black, C.; Diouf, D.; Xi, Z.; Rushworth, C. A.; Gitzendanner, M. A.; Sytsma, K. J.; Qiu, Y.-L.; Hilu, K. W.; Davis, C. C.; Sanderson, M. J.; Beaman, R. S.; Olmstead, R. G.; Judd, W. S.; Donoghue, M. J.; Soltis, P. S. (8 April 2011). "Angiosperm phylogeny: 17 genes, 640 taxa". American Journal of Botany 98 (4): 704–730. doi:10.3732/ajb.1000404.
- Zeng, Liping; Zhang, Qiang; Sun, Renran; Kong, Hongzhi; Zhang, Ning; Ma, Hong (24 September 2014). "Resolution of deep angiosperm phylogeny using conserved nuclear genes and estimates of early divergence times". Nature Communications 5 (4956). doi:10.1038/ncomms5956.
APG
- APG (1998). "An ordinal classification for the families of flowering plants". Annals of the Missouri Botanical Garden. 85: 531-553. (4): 531–553. JSTOR 2992015.
- APG II (2003). "An Update of the Angiosperm Phylogeny Group Classification for the orders and families of flowering plants: APG II". Botanical Journal of the Linnean Society 141 (141): 399–436. doi:10.1046/j.1095-8339.2003.t01-1-00158.x.
- APG III (2009). "An Update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III.". Botanical Journal of the Linnean Society 161 (2): 105–121. doi:10.1111/j.1095-8339.2009.00996.x. Retrieved 3 January 2014.
- Chase, Mark W; Reveal, James L (2009). "A phylogenetic classification of the land plants to accompany APG III" (PDF). Botanical Journal of the Linnean Society 161: 122–127. Retrieved 21 April 2015.
- Haston, Elspeth; Richardson, James E.; Stevens, Peter F.; Chase, Mark W.; Harris, David J. (2009). "The Linear Angiosperm Phylogeny Group (LAPG) III: a linear sequence of the families in APG III". Botanical Journal of the Linnean Society 161 (2): 128–131. doi:10.1111/j.1095-8339.2009.01000.x.
- Goremykin, Vadim V.; Hansman, Sabine; Martin, William F. (March 1997). "Evolutionary analysis of 58 proteins encoded in six completely sequenced chloroplast genomes: revised molecular estimates of two seed plant divergence times". Plant Syst. Evol. 206 (1): 337–351. doi:10.1007/bf00987956.
Websites and databases
- Stevens, P.F. (2015) [2001], Angiosperm Phylogeny Website, Missouri Botanical Garden, retrieved 13 April 2015
- "National Botanic Gardens of Ireland". 2016. Retrieved 19 January 2016.
External links
|
Wikispecies has information related to: Monocots |
- Tree of Life Web Project: Monocotyledons
- "Numbers of threatened species by major groups of organisms (1996–2004)". International Union for Conservation of Nature and Natural Resources. Archived from the original on 2006-09-27. Retrieved 2006-12-15.
- Monocots Plant Life Forms
- World list of monocot species via the Catalogue of Life
- Tree browser for monocot orders, families and genera with species counts and estimates via the Catalogue of Life
Orders of Monocotyledons
|
|
|
|
Lilioid monocots |
- Asparagales
- Dioscoreales
- Liliales
- Pandanales
- Petrosaviales
|
|
Commelinids |
- Arecales
- Commelinales
- Poales
- Zingiberales
- Dasypogonaceae
|
|