出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2016/09/13 00:43:32」(JST)
Ketogenesis is the biochemical process by which organisms produce a group of substances collectively known as ketone bodies by the breakdown of fatty acids and ketogenic amino acids.[1][2] This process supplies energy to certain organs (particularly the brain) under circumstances such as fasting, but insufficient ketogenesis can cause hypoglycemia and excessive production of ketone bodies leads to a dangerous state known as ketoacidosis.[3]
Ketone bodies are produced mainly in the mitochondria of liver cells, and synthesis can occur in response to an unavailability of blood glucose, such as during fasting.[3]
Ketogenesis takes place in the setting of low glucose levels in the blood, after exhaustion of other cellular carbohydrate stores, such as glycogen.[citation needed] It can also take place when there is insufficient insulin (e.g. in diabetes), particularly during periods of "ketogenic stress" such as intercurrent illness.[3]
The production of ketone bodies is then initiated to make available energy that is stored as fatty acids. Fatty acids are enzymatically broken down in β-oxidation to form acetyl-CoA. Under normal conditions, acetyl-CoA is further oxidized by the citric acid cycle (TCA/Krebs cycle) and then by the mitochondrial electron transport chain to release energy. However, if the amounts of acetyl-CoA generated in fatty-acid β-oxidation challenge the processing capacity of the TCA cycle; i.e. if activity in TCA cycle is low due to low amounts of intermediates such as oxaloacetate, acetyl-CoA is then used instead in biosynthesis of ketone bodies via acetoacyl-CoA and β-hydroxy-β-methylglutaryl-CoA (HMG-CoA). Deaminated amino acids that are ketogenic, such as leucine, also feed TCA cycle, forming acetoacetate & ACoA and thereby produce ketones.[1] Besides its role in the synthesis of ketone bodies, HMG-CoA is also an intermediate in the synthesis of cholesterol, but the steps are compartmentalised.[1][2] Ketogenesis occurs in the mitochondria, whereas cholesterol synthesis occurs in the cytosol, hence both the processes are independently regulated.[2]
The three ketone bodies, each synthesized from acetyl-CoA molecules, are:
Ketogenesis may or may not occur, depending on levels of available carbohydrates in the cell or body. This is closely related to the paths of acetyl-CoA:[citation needed]
Both acetoacetate and beta-hydroxybutyrate are acidic, and, if levels of these ketone bodies are too high, the pH of the blood drops, resulting in ketoacidosis. Ketoacidosis is known to occur in untreated type I diabetes (see diabetic ketoacidosis) and in alcoholics after prolonged binge-drinking without intake of sufficient carbohydrates (see alcoholic ketoacidosis).[citation needed]
Ketogenesis can be ineffective in people with beta oxidation defects.[3]
Figure 8.57: Metabolism of L-leucine
|access-date=
(help)
Metabolism map
|
|
---|---|
Carbon
Fixation Photo-
respiration Pentose
Phosphate Citric
Acid Cycle Glyoxylate
Cycle Urea
Cycle Fatty
Acid Fatty
Acid Beta
Oxidation Peroxisomal
Beta
Oxidation Glyco-
genolysis Glyco-
genesis Glyco-
lysis Gluconeo-
genesis Decarb-
oxylation Fermentation
Keto-
lysis Keto-
genesis feeders to
Gluconeo- Direct / C4 / CAM
Carbon Intake Light Reaction
Oxidative
Phosphorylation Amino Acid
Deamination Citrate
Shuttle Lipogenesis
Lipolysis
Steroidogenesis
MVA Pathway
MEP Pathway
Shikimate
Pathway Transcription &
Replication Translation
Proteolysis
Glycosy-
lation Sugar
Acids Double/Multiple
Sugars & Glycans Simple
Sugars Inositol-P
Amino Sugars
& Sialic Acids Nucleotide Sugars
Hexose-P
Triose-P
Glycerol
P-glycerates
Pentose-P
Tetrose-P
Propionyl
-CoA Succinate
Acetyl
-CoA Pentose-P
P-glycerates
Glyoxylate
Photosystems
Pyruvate
Lactate
Acetyl
-CoA Citrate
Oxalo-
acetate Malate
Succinyl
-CoA α-Keto-
glutarate Ketone
Bodies Respiratory
Chain Serine Group
Alanine
Branched-chain
Amino Acids Aspartate
Group Homoserine
Group Glutamate
Group Arginine
Creatine
& Polyamines Ketogenic &
Glucogenic Amino Acids
Shikimate
Aromatic Amino
Acids & Histidine Ascorbate
(Vitamin C) δ-ALA
Bile
Pigments Hemes
Cobalamins (Vitamin B12)
Various
Vitamin B's Calciferols
(Vitamin D) Retinoids
(Vitamin A) Quinones (Vitamin K)
& Carotenoids (Vitamin E) Cofactors
Vitamins
& Minerals Antioxidants
PRPP
Nucleotides
Nucleic
Acids Proteins
Glycoproteins
& Proteoglycans Chlorophylls
MEP
MVA
Acetyl
-CoA Polyketides
Terpenoid
Backbones Terpenoids
& Carotenoids (Vitamin A) Cholesterol
Bile Acids
Glycero-
phospholipids Glycerolipids
Acyl-CoA
Fatty
Acids Glyco-
sphingolipids Sphingolipids
Waxes
Polyunsaturated
Fatty Acids Neurotransmitters
& Thyroid Hormones Steroids
Endo-
cannabinoids Eicosanoids
|
Metabolism: lipid metabolism / fatty acid metabolism, triglyceride and fatty acid enzymes
|
|||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Synthesis |
|
||||||||||||||||||||||||||||
Degradation |
|
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
.