出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2015/06/24 19:29:06」(JST)
This article may be too technical for most readers to understand. Please help improve this article to make it understandable to non-experts, without removing the technical details. The talk page may contain suggestions. (December 2011) |
In numerous fields of study, the component of instability within a system is generally characterized by some of the outputs or internal states growing without bounds.[1] Not all systems that are not stable are unstable; systems can also be marginally stable or exhibit limit cycle behavior.
In control theory, a system is unstable if any of the roots of its characteristic equation has real part greater than zero (or if zero is a repeated root). This is equivalent to any of the eigenvalues of the state matrix having either real part greater than zero, or, for the eigenvalues on the imaginary axis, the algebraic multiplicity being larger than the geometric multiplicity.
In structural engineering, a structure can become unstable when excessive load is applied. Beyond a certain threshold, structural deflections magnify stresses, which in turn increases deflections. This can take the form of buckling or crippling. The general field of study is called structural stability.
Atmospheric instability is a major component of all weather systems on Earth.
Fluid instabilities occur in liquids, gases and plasmas, and are often characterized by the shape that form; they are studied in fluid dynamics and magnetohydrodynamics. Fluid instabilities include:
Plasma instabilities can be divided into two general groups (1) hydrodynamic instabilities (2) kinetic instabilities. Plasma instabilities are also categorised into different modes – see this paragraph in plasma stability.
Galaxies and star clusters can be unstable, if small perturbations in the gravitational potential cause changes in the density that reinforce the original perturbation. Such instabilities usually require that the motions of stars be highly correlated, so that the perturbation is not "smeared out" by random motions. After the instability has run its course, the system is typically "hotter" (the motions are more random) or rounder than before. Instabilities in stellar systems include:
The most common residual disability after any sprain in the body is instability. Mechanical instability includes insufficient stabilizing structures and mobility that exceed the physiological limits. Functional instability involves recurrent sprains or a feeling of giving way of the injured joint.[5] Injuries cause proprioceptive deficits and impaired postural control in the joint. Individuals with muscular weakness, occult instability, and decreased postural control are more susceptible to injury than those with better postural control. Instability leads to an increase in postural sway, the measurement of the time and distance a subject spends away from an ideal center of pressure. The measurement of a subject’s postural sway can be calculated through testing center of pressure (CoP), which is defined as the vertical projection of center of mass on the ground. Investigators have theorized that if injuries to joints cause deafferentation, the interruption of sensory nerve fibers, and functional instability, then a subject’s postural sway should be altered.[6] Joint stability can be enhanced by the use of an external support system, like a brace, to alter body mechanics. The mechanical support provided by a brace provides cutaneous afferent feedback in maintaining postural control and increasing stability.
|accessdate=
requires |url=
(help)|accessdate=
requires |url=
(help)
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
リンク元 | 「lability」「不安定さ」「不安定性」 |
拡張検索 | 「chromosome instability」「joint instability」「autonomic instability」 |
.