エノキサシン
Wikipedia preview
出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2016/03/09 16:09:23」(JST)
[Wiki en表示]
Enoxacin
|
Systematic (IUPAC) name |
1-ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydro-1,8-naphthyridine-3-carboxylic acid
|
Clinical data |
AHFS/Drugs.com |
monograph |
MedlinePlus |
a601013 |
Routes of
administration |
Oral |
Identifiers |
CAS Number |
74011-58-8 Y |
ATC code |
J01MA04 |
PubChem |
CID 3229 |
DrugBank |
DB00467 Y |
ChemSpider |
3116 Y |
UNII |
325OGW249P Y |
KEGG |
D00310 Y |
ChEBI |
CHEBI:157175 Y |
ChEMBL |
CHEMBL826 Y |
Chemical data |
Formula |
C15H17FN4O3 |
Molar mass |
320.319 g/mol |
SMILES
-
Fc1c(nc2c(c1)C(=O)C(\C(=O)O)=C/N2CC)N3CCNCC3
|
InChI
-
InChI=1S/C15H17FN4O3/c1-2-19-8-10(15(22)23)12(21)9-7-11(16)14(18-13(9)19)20-5-3-17-4-6-20/h7-8,17H,2-6H2,1H3,(H,22,23) Y
-
Key:IDYZIJYBMGIQMJ-UHFFFAOYSA-N Y
|
(verify) |
Enoxacin[note 1] is an oral broad-spectrum fluoroquinolone antibacterial agent used in the treatment of urinary tract infections and gonorrhea. Insomnia is a common adverse effect.[1][2] It is no longer available in the United States.
It has been shown recently that it may have cancer inhibiting effect.[3]
Contents
- 1 Mechanism of action
- 2 Pharmacokinetics
- 3 Medical uses
- 4 Adverse effects
- 5 Contraindications
- 6 Interactions
- 7 Notes
- 8 References
- 9 Additional reading
- 10 External links
Mechanism of action
Quinolones and fluoroquinolones are bactericidal drugs, eradicating bacteria by interfering with DNA replication. Like other fluoroquinolones, enoxacin functions by inhibiting bacterial DNA gyrase and topoisomerase IV. The inhibition of these enzymes prevents bacterial DNA replication, transcription, repair and recombination.[4][5] Enoxacin is active against many Gram-positive bacteria.[note 2] The quinolone is also active against Gram-negative bacteria[note 3][6][7]
Pharmacokinetics
After oral administration enoxacin is rapidly and well absorbed from the gastrointestinal tract. The antibiotic is widely distributed throughout the body and in the different biological tissues. Tissue concentrations often exceed serum concentrations. The binding of enoxacin to serum proteins is 35 to 40%. The serum elimination half-life, in subjects with normal renal function, is approximately 6 hours. Approximately 60% of an orally administered dose is excreted in the urine as unchanged drug within 24 hours.[8][9] A small amount of a dose of drug administered is excreted in the bile.[10] High concentrations of the fluoroquinolone are reached in the urinary tract and this fact ensures an antibacterial effect continued over time, particularly in this district.
Medical uses
Enoxacin can be used to treat a wide variety of infections, particularly gastroenteritis including infectious diarrhea, respiratory tract infections, gonorrhea[11] and urinary tract infections.[12][13]
Adverse effects
Enoxacin, like other fluoroquinolones, is known to trigger seizures or lower the seizure threshold.[14] The compound should not be administered to patients with epilepsy or a personal history of previous convulsive attacks as may promote the onset of these disorders.[15]
Contraindications
Enoxacin is contraindicated in subjects with a history of hypersensitivity to the substance or any other member of the quinolone class, or any component of the medicine. Enoxacin, like other fluoroquinolones, can cause degenerative changes in weightbearing joints of young animals. The compound should only be used in children when the expected benefits are outweigh the risks.[16][17]
Interactions
- Fenbufen: co-administration with some quinolones, including enoxacin may increase the risk of seizures. For this reason, concomitant administration of fenbufen and the quinolone should be avoided, as a precaution.[18][19][20][21]
- Theophylline: in patients treated concurrently with theophylline and enoxacin, concentrations of the methylxanthine in plasma arise due to a reduced metabolic clearance of theophylline.[22][23][24][25]
- Ranitidine, sucralfate, antacids containing magnesium or aluminum, supplements containing calcium, iron, or zinc: co-administration with these substances can lead to therapeutic failure of the antibiotic due to decreased absorbment by the intestinal tract. For example magnesium or aluminum antacids turn enoxacin into insoluble salts that are not readily absorbed by the gastroenteric tract.[26][27][28]
Notes
- ^ Enoxacin is sold under the following trade names: Almitil, Bactidan, Bactidron, Comprecin, Enoksetin, Enoxen, Enroxil, Enoxin, Enoxor, Flumark, Penetrex, Gyramid, Vinone.
- ^ Examples of Gram-positive bacteria include: Klebsiella pneumoniae, Staphylococcus aureus, Staphylococcus epidermidis, Clostridium perfringens.
- ^ Gram-negative bacteria include: Acinetobacter, Citrobacter, Campylobacter, Escherichia coli, Haemophilus influenzae, Moraxella catarrhalis, Serratia marcescens, Pseudomonas aeruginosa, Proteus mirabilis, Proteus vulgaris, Salmonella, Shigella flexneri.
References
- ^ Rafalsky, V.; Andreeva, I.; Rjabkova, E.; Rafalsky, Vladimir V (2006). Rafalsky, Vladimir V, ed. "Quinolones for uncomplicated acute cystitis in women". Cochrane Database Syst Rev 3 (3): CD003597. doi:10.1002/14651858.CD003597.pub2. PMID 16856014.
- ^ Mogabgab, WJ. (Dec 1991). "Recent developments in the treatment of sexually transmitted diseases". Am J Med 91 (6A): 140S–144S. doi:10.1016/0002-9343(91)90327-T. PMID 1767802.
- ^ http://www.pnas.org/content/early/2011/02/24/1014720108
- ^ Yoshida H, Nakamura M, Bogaki M, Ito H, Kojima T, Hattori H, Nakamura S (April 1993). "Mechanism of action of quinolones against Escherichia coli DNA gyrase". Antimicrob. Agents Chemother. 37 (4): 839–45. doi:10.1128/aac.37.4.839. PMC 187778. PMID 8388200. Retrieved 2014-09-24.
- ^ Wolfson JS, Hooper DC (October 1985). "The fluoroquinolones: structures, mechanisms of action and resistance, and spectra of activity in vitro". Antimicrob. Agents Chemother. 28 (4): 581–6. doi:10.1128/aac.28.4.581. PMC 180310. PMID 3000292. Retrieved 2014-09-24.
- ^ Chin NX, Neu HC (November 1983). "In vitro activity of enoxacin, a quinolone carboxylic acid, compared with those of norfloxacin, new beta-lactams, aminoglycosides, and trimethoprim". Antimicrob. Agents Chemother. 24 (5): 754–63. doi:10.1128/aac.24.5.754. PMC 185938. PMID 6229216. Retrieved 2014-09-24.
- ^ Wise R, Andrews JM, Danks G (March 1984). "In-vitro activity of enoxacin (CL-919), a new quinoline derivative, compared with that of other antimicrobial agents". J. Antimicrob. Chemother. 13 (3): 237–44. doi:10.1093/jac/13.3.237. PMID 6586712. Retrieved 2014-09-24.
- ^ Wise R, Lockley R, Dent J, Webberly M (July 1984). "Pharmacokinetics and tissue penetration of enoxacin". Antimicrob. Agents Chemother. 26 (1): 17–9. doi:10.1128/aac.26.1.17. PMC 179907. PMID 6591851. Retrieved 2014-09-24.
- ^ Wise R, Lister D, McNulty CA, Griggs D, Andrews JM (1986). "The comparative pharmacokinetics and tissue penetration of four quinolones including intravenously administered enoxacin". Infection. 14 Suppl 3: S196–202. doi:10.1007/bf01667843. PMID 3463542.
- ^ Flowerdew, A., E. Walker, and S. J. Karran. "Evaluation of biliary pharmacokinetics of oral enoxacin, a new quinolone antibiotic." 14th International Congress of Chemotherapy, Kyoto. 1985.
- ^ van der Willigen AH, van der Hoek JC, Wagenvoort JH, van Vliet HJ, van Klingeren B, Schalla WO, Knapp JS, van Joost T, Michel MF, Stolz E (April 1987). "Comparative double-blind study of 200- and 400-mg enoxacin given orally in the treatment of acute uncomplicated urethral gonorrhea in males". Antimicrob. Agents Chemother. 31 (4): 535–8. doi:10.1128/aac.31.4.535. PMC 174773. PMID 3111354. Retrieved 2014-09-24.
- ^ Huttunen M, Kunnas K, Saloranta P (February 1988). "Enoxacin treatment of urinary tract infections in elderly patients". J. Antimicrob. Chemother. 21 Suppl B: 105–11. doi:10.1093/jac/21.suppl_b.105. PMID 3162900. Retrieved 2014-09-24.
- ^ Backhouse CI, Matthews JA (June 1989). "Single-dose enoxacin compared with 3-day treatment for urinary tract infection". Antimicrob. Agents Chemother. 33 (6): 877–80. doi:10.1128/aac.33.6.877. PMC 284249. PMID 2764538. Retrieved 2014-09-24.
- ^ De Sarro A, Zappalá M, Chimirri A, Grasso S, De Sarro GB (July 1993). "Quinolones potentiate cefazolin-induced seizures in DBA/2 mice". Antimicrob. Agents Chemother. 37 (7): 1497–503. doi:10.1128/aac.37.7.1497. PMC 188001. PMID 8395790. Retrieved 2014-09-25.
- ^ Simpson KJ, Brodie MJ (July 1985). "Convulsions related to enoxacin". Lancet 2 (8447): 161. doi:10.1016/s0140-6736(85)90270-3. PMID 2862357.
- ^ Chalumeau M, Tonnelier S, D'Athis P, Tréluyer JM, Gendrel D, Bréart G, Pons G (June 2003). "Fluoroquinolone safety in pediatric patients: a prospective, multicenter, comparative cohort study in France". Pediatrics 111 (6 Pt 1): e714–9. doi:10.1542/peds.111.6.e714. PMID 12777590. Retrieved 2014-09-24.
- ^ "The use of systemic fluoroquinolones". Pediatrics 118 (3): 1287–92. September 2006. doi:10.1542/peds.2006-1722. PMID 16951028. Retrieved 2014-09-24.
- ^ Morita H, Maemura K, Sakai Y, Kaneda Y (May 1988). "[A case of convulsion, loss of consciousness and subsequent acute renal failure caused by enoxacin and fenbufen]". Nippon Naika Gakkai Zasshi (in Japanese) 77 (5): 744–5. doi:10.2169/naika.77.744. PMID 3216153.
- ^ Hara Y, Ally A, Suzuki T, Murayama S (October 1992). "[Effects of drugs on the convulsions induced by the combination of a new quinolone antimicrobial, enoxacin, and a nonsteroidal anti-inflammatory drug, fenbufen, in mice]". Nippon Yakurigaku Zasshi (in Japanese) 100 (4): 301–5. doi:10.1254/fpj.100.301. PMID 1446880.
- ^ Masukawa T, Nakanishi K, Natsuki R (April 1998). "Role of nitric oxide in the convulsions following the coadministration of enoxacin with fenbufen in mice". Jpn. J. Pharmacol. 76 (4): 425–9. doi:10.1254/jjp.76.425. PMID 9623721. Retrieved 2014-09-25.
- ^ Masukawa T, Nakanishi K (February 1997). "Circadian variation in enoxacin-induced convulsions in mice coadministered with fenbufen". Jpn. J. Pharmacol. 73 (2): 175–7. doi:10.1254/jjp.73.175. PMID 9074952. Retrieved 2014-09-25.
- ^ Wijnands WJ, van Herwaarden CL, Vree TB (July 1984). "Enoxacin raises plasma theophylline concentrations". Lancet 2 (8394): 108–9. doi:10.1016/s0140-6736(84)90283-6. PMID 6145999.
- ^ Niki Y, Soejima R, Kawane H, Sumi M, Umeki S (October 1987). "New synthetic quinolone antibacterial agents and serum concentration of theophylline". Chest 92 (4): 663–9. doi:10.1378/chest.92.4.663. PMID 3477409. Retrieved 2014-09-25.
- ^ Mizuki Y, Fujiwara I, Yamaguchi T, Sekine Y (August 1996). "Structure-related inhibitory effect of antimicrobial enoxacin and derivatives on theophylline metabolism by rat liver microsomes". Antimicrob. Agents Chemother. 40 (8): 1875–80. PMC 163433. PMID 8843297. Retrieved 2014-09-25.
- ^ Sano M, Kawakatsu K, Ohkita C, Yamamoto I, Takeyama M, Yamashina H, Goto M (1988). "Effects of enoxacin, ofloxacin and norfloxacin on theophylline disposition in humans". Eur. J. Clin. Pharmacol. 35 (2): 161–5. doi:10.1007/bf00609246. PMID 3191935.
- ^ Grasela TH, Schentag JJ, Sedman AJ, Wilton JH, Thomas DJ, Schultz RW, Lebsack ME, Kinkel AW (May 1989). "Inhibition of enoxacin absorption by antacids or ranitidine". Antimicrob. Agents Chemother. 33 (5): 615–7. doi:10.1128/aac.33.5.615. PMC 172500. PMID 2751276. Retrieved 2014-09-25.
- ^ Nix DE, Lebsack ME, Chapelsky M, Sedman AJ, Busch J, Norman A (April 1993). "Effect of oral antacids on disposition of intravenous enoxacin". Antimicrob. Agents Chemother. 37 (4): 775–7. doi:10.1128/aac.37.4.775. PMC 187758. PMID 8494374. Retrieved 2014-09-25.
- ^ Misiak PM, Eldon MA, Toothaker RD, Sedman AJ (January 1993). "Effects of oral cimetidine or ranitidine on the pharmacokinetics of intravenous enoxacin". J Clin Pharmacol 33 (1): 53–6. doi:10.1002/j.1552-4604.1993.tb03903.x. PMID 8429114. Retrieved 2014-09-25.
Additional reading
- Patel, SS; Spencer, CM (January 1996). "Enoxacin: a reappraisal of its clinical efficacy in the treatment of genitourinary tract infections". Drugs 51 (1): 137–60. doi:10.2165/00003495-199651010-00009. PMID 8741236. .
External links
Antibacterials: nucleic acid inhibitors (J01E, J01M)
|
|
Antifolates
(inhibits
purine metabolism,
thereby inhibiting
DNA and RNA synthesis) |
DHFR inhibitor |
- 2,4-Diaminopyrimidine
- Trimethoprim#
- Brodimoprim
- Tetroxoprim
- Iclaprim†
|
|
Sulfonamides
(DHPS inhibitor) |
Short-
acting |
- Sulfaisodimidine
- Sulfamethizole
- Sulfadimidine
- Sulfapyridine
- Sulfafurazole
- Sulfanilamide
- Sulfathiazole
- Sulfathiourea
|
|
Intermediate-
acting |
- Sulfamethoxazole
- Sulfadiazine#
- Sulfamoxole
|
|
Long-
acting |
- Sulfadimethoxine
- Sulfadoxine
- Sulfalene
- Sulfametomidine
- Sulfametoxydiazine
- Sulfamethoxypyridazine
- Sulfaperin
- Sulfamerazine
- Sulfaphenazole
- Sulfamazone
|
|
Other/ungrouped |
- Sulfacetamide
- Sulfadicramide
- Sulfametrole
|
|
|
Combinations |
- Trimethoprim/sulfamethoxazole#
|
|
|
Topoisomerase
inhibitors/
quinolones/
(inhibits
DNA replication) |
1st g. |
- Cinoxacin‡
- Flumequine‡
- Nalidixic acid‡
- Oxolinic acid‡
- Pipemidic acid‡
- Piromidic acid‡
- Rosoxacin‡
|
|
Fluoro-
quinolones |
2nd g. |
- Ciprofloxacin#
- Ofloxacin
- Enoxacin‡
- Fleroxacin‡
- Lomefloxacin‡
- Nadifloxacin‡
- Norfloxacin‡
- Pefloxacin‡
- Rufloxacin‡
|
|
3rd g. |
- Levofloxacin
- Balofloxacin‡
- Grepafloxacin‡
- Pazufloxacin‡
- Sparfloxacin‡
- Temafloxacin‡
- Tosufloxacin‡
|
|
4th g. |
- Besifloxacin
- Gatifloxacin
- Finafloxacin
- Gemifloxacin
- Moxifloxacin
- Clinafloxacin†
- Garenoxacin‡
- Prulifloxacin‡
- Sitafloxacin‡
- Trovafloxacin‡/Alatrofloxacin‡
|
|
Vet. |
- Danofloxacin
- Difloxacin
- Enrofloxacin
- Ibafloxacin
- Marbofloxacin
- Orbifloxacin
- Pradofloxacin
- Sarafloxacin
|
|
|
Newer non-fluorinated |
|
|
Related (DG) |
- Aminocoumarins: Novobiocin
|
|
|
Anaerobic DNA
inhibitors |
Nitro- imidazole derivatives |
- Metronidazole#
- Tinidazole
- Ornidazole
|
|
Nitrofuran derivatives |
- Nitrofurantoin#
- Furazolidone‡
- Nifurtoinol
|
|
|
RNA synthesis |
Rifamycins/
RNA polymerase |
- Rifampicin#
- Rifabutin
- Rifapentine
- Rifaximin
- Rifalazil§
|
|
|
- #WHO-EM
- ‡Withdrawn from market
- Clinical trials:
- †Phase III
- §Never to phase III
|
|
UpToDate Contents
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
English Journal
- Occurrence of fluoroquinolones and fluoroquinolone-resistance genes in the aquatic environment.
- Adachi F, Yamamoto A, Takakura KI, Kawahara R.SourceOsaka Prefectural Institute of Public Health, 1-3-69 Nakamichi, Higashinari-ku, Osaka 537-0025, Japan.
- The Science of the total environment.Sci Total Environ.2013 Jan 3;444C:508-514. doi: 10.1016/j.scitotenv.2012.11.077. [Epub ahead of print]
- Fluoroquinolones (FQs) have been detected in aquatic environments in several countries. Long-term exposure to low levels of antimicrobial agents provides selective pressure, which might alter the sensitivity of bacteria to antimicrobial agents in the environment. Here, we examined FQ levels and the
- PMID 23291652
- Emergence of resistance to fluoroquinolones among gram positive and gram negative clinical isolates.
- Nesar S, Shoaib MH, Rahim N, Rehman R.SourceJinnah Medical and Dental College, Karachi, Pakistan.
- Pakistan journal of pharmaceutical sciences.Pak J Pharm Sci.2012 Oct;25(4):877-81.
- Fluoroquinolones are broad-spectrum antibiotics that are considered as first line drugs to treat infectious diseases. In order to find out useful fluoroquinolones, the antibiotic resistance of fluoroquinolones, namely, ofloxacin (OFL), ciprofloxacin (CIP), norfloxacin (NRF), enoxacin (ENX), pefloxac
- PMID 23010009
- [Analysis of pollution levels of 16 antibiotics in the river water of Daliao River water system].
- Yang C, Wang L, Hou X, Chen J.SourceShenyang Pharmaceutical University, Shenyang 110016, China.
- Se pu = Chinese journal of chromatography / Zhongguo hua xue hui.Se Pu.2012 Aug;30(8):756-62.
- The detection of the pollution level of antibiotics in Daliao River system is a meaningful work. Sixteen antibiotics (6 sulfonamides, 5 fluoroquinolones, 3 tetracyclines and 2 chloramphenicols) were simultaneously quantified with solid-phase extraction (SPE) and liquid chromatography-tandem mass spe
- PMID 23256376
Japanese Journal
- Quinolone compounds enhance δ-aminolevulinic acid-induced accumulation of protoporphyrin IX and photosensitivity of tumour cells
- Ohgari Yoshiko,Miyata Yoshinobu,Chau Tuan Thanh [他],KITAJIMA Sakihito,ADACHI Yasushi,TAKETANI Shigeru
- The journal of biochemistry 149(2), 153-160, 2011-02-01
- NAID 10030583338
- 堀 誠治
- 薬学雑誌. 乙号 131(10), 1423-1428, 2011
- … And enoxacin, lomefloxacin and gatifloxacin have been reported to decrease blood glucose levels in a dose-depend- ent manner, but ciprofloxacin and levofloxacin had no effect on the levels. …
- NAID 130001246161
- Quantitative Comparison of the Convulsive activity of Combinations of Twelve Fluoroquinolones with Five Nonsteroidal Antiinflammatory Agents
- KIM Jahye,OHTANI Hisakazu,TSUJIMOTO Masayuki,SAWADA Yasufumi
- Drug Metabolism and Pharmacokinetics 24(2), 167-174, 2009
- … This study evaluates the inhibitory effects of twelve fluoroquinolones (ciprofloxacin, enoxacin, fleroxacin, gatifloxacin, levofloxacin, lomefloxacin, norfloxacin, ofloxacin, pazufloxacin, prulifloxacin, sparfloxacin, and tosufloxacin) alone or in the presence of an NSAID (4-biphenylacetic acid, diclofenac sodium, loxoprofen, lornoxicam or zaltoprofen) on the GABAA receptor binding of [3H]muscimol in an in vitro study using mice synaptic plasma membrane. … ciprofloxacin ≥ enoxacin > …
- NAID 130004463059
Related Links
- [Enoxacin] [84294-96-2] | 価格や在庫、物性値などの詳細情報ページです。 ... 別名 (英名) 1-Ethyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl)-1,8-naphthyridine-3-carboxylic Acid Sesquihydrate 和名 エノキサシン1.5水和物
- Enoxacin information including symptoms, causes, diseases, symptoms, treatments, and other medical and health issues. ... Introduction: Enoxacin Description of Enoxacin Enoxacin: A broad-spectrum 6-fluoronaphthyridinone ...
Related Pictures
★リンクテーブル★
[★]
- 英
- enoxacin
- 化
- エノキサシン水和物 enoxacin hydrate
- 商
- フルマーク
[★]
- 関
- enoxacin