The Chlamydiae are bacterial phylum and class whose members are a group of obligate intracellular bacteria, whose members are remarkably diverse, ranging from pathogens of humans and animals to symbionts of ubiquitous protozoa.[1]
They are ovoid in shape and stain Gram-negative. Historically it was believed that all Chlamydiae species had a peptidoglycan-free cell wall, but recent work demonstrates a detectable presence of peptidoglycan, as well as other important proteins.[2][3][4] Many species belonging to this order are susceptible to antimicrobial agents.
All known Chlamydiae only grow by infecting eukaryotic host cells. They are as small as or smaller than many viruses. They are dependent on replication inside the host cells, thus some species are termed obligate intracellular pathogens and others are symbionts of ubiquitous protozoa. Most intracellular Chlamydiae are located in an inclusion body or vacuole. Outside cells, they survive only as an extracellular infectious form. Chlamydiae can grow only where their host cells grow, and develop according to a characteristic biphasic developmental cycle.[5][6][7] Therefore, Chlamydiae cannot be propagated in bacterial culture media in the clinical laboratory. Chlamydiae are most successfully isolated while still inside their host cells. Chlamydiae is the most common bacterial STD in the United States and 2.86 million chlamydiae infections are reported annually.
Contents
1History
2Nomenclature
3Taxonomy and molecular signatures
4Phylogenetics
5Human pathogens and diagnostics
6Phylogeny
7Taxonomy
8References
9External links
History
Chlamydia-like disease affecting the eyes of people was first described in ancient Chinese and Egyptian manuscripts. A modern description of chlamydia-like organisms was provided by Halberstaedrrter and von Prowazek in 1907. Chlamydial isolates cultured in the yolk sacs of embryonating eggs were obtained from a human pneumonitis outbreak in the late 1920s and early 1930s, and by the mid-20th century, isolates had been obtained from dozens of vertebrate species. The term 'chlamydia' (a cloak) appeared in the literature in 1945, although other names continued to be used, including Bedsonia, Miyagawanella, ornithosis-, TRIC-, and PLT-agents. In 1956, Chlamydia trachomatis was first cultured by Tang Fei-fan, though they were not yet recognized as bacteria.[8]
Nomenclature
In 1966, Chlamydiae were recognized as bacteria and the genus Chlamydia was validated.[9] The order Chlamydiales was created by Storz and Page in 1971. The class Chlamydiia was recently validly published.[10][11][12] Between 1989 and 1999, new families, genera, and species were recognized. The phylum Chlamydiae was established in Bergey's Manual of Systematic Bacteriology.[13] By 2006, genetic data for over 350 chlamydial lineages had been reported,[14]
Taxonomy and molecular signatures
The Chlamydiae currently contain eight validly named genera, and 14 candidatus genera.[15] The phylum presently consist of two orders (Chlamydiales, Parachlamydiales) and nine families within a single class (Chlamydiia).[10][11] Only four of these families are validly named (Chlamydiaceae, Parachlamydiaceae, Simkaniaceae, Waddliaceae)[16][17] while five are described as Candidatus families (Clavichlamydiaceae, Criblamydiaceae, Parilichlamydiaceae, Piscichlamydiaceae, and Rhabdochlamydiaceae).[18][19][20]
The Chlamydiales order as recently described contains the families Chlamydiaceae, and the Candidatus Clanchiamydiaceae, while the new Parachlamydiales order harbors the remaining seven families.[10] This proposal is supported by the observation of two distinct phylogenetic clades that warrant taxonomic ranks above the family level. Molecular signatures in the form of conserved indels (CSIs) and proteins (CSPs) have been found to be uniquely shared by each separate order, providing a means of distinguishing each clade from the other and supporting the view of shared ancestry of the families within each order.[10][21] The distinctness of the two orders is also supported by the fact that no CSIs were found among any other combination of families.
Molecular signatures have also been found that are exclusive for the family Chlamydiaceae.[10][21] The Chlamydiaceae originally consisted of one genus, Chlamydia, but in 1999 was split into two genera, Chlamydophila and Chlamydia. The genera have since 2015 been reunited where species belonging to the genus Chlamydophila have been reclassified as Chlamydia species.[22][23] However, CSIs and CSPs have been found specifically for Chlamydophila species, supporting their distinctness from Chlamydia, perhaps warranting additional consideration of two separate groupings within the family.[10][21] CSIs and CSPs have also been found that are exclusively shared by all Chlamydia that are further indicative of a lineage independent from Chlamydophila, supporting a means to distinguish Chlamydia species from neighbouring Chlamydophila members.
Phylogenetics
The Chlamydiae form a unique bacterial evolutionary group that separated from other bacteria about a billion years ago, and can be distinguished by the presence of several CSIs and CSPs.[10][21][24][25] The species from this group can be distinguished from all other bacteria by the presence of conserved indels in a number of proteins and by large numbers of signature proteins that are uniquely present in different Chlamydiae species.[26][27] Reports have varied as to whether the Chlamydiae are related to the Planctomycetales or Spirochaetes.[28][29] Genome sequencing, however, indicates that 11% of the genes in Candidatus Protochlamydia amoebophila UWE25 and 4% in the Chlamydiaceae are most similar to chloroplast, plant, and cyanobacterial genes.[25] Cavalier-Smith has postulated that the Chlamydiae fall into the clade Planctobacteria in the larger clade Gracilicutes. However, phylogeny and shared presence of CSIs in proteins that are lineage-specific indicate that the Verrucomicrobia are the closest free-living relatives of these parasitic organisms.[30] Comparison of ribosomal RNA genes has provided a phylogeny of known strains within Chlamydiae.[14]
Human pathogens and diagnostics
Three species of Chlamydiae that commonly infect humans are described:
Chlamydia trachomatis, which causes the eye-disease trachoma and the sexually transmitted infection chlamydia
Chlamydophila pneumoniae, which causes a form of pneumonia
Chlamydophila psittaci, which causes psittacosis
The unique physiological status of the Chlamydiae including their biphasic lifecycle and obligation to replicate within a eukaryotic host has enabled the use of DNA analysis for chlamydial diagnostics.[31] Horizontal transfer of genes is evident and complicates this area of research. In one extreme example, two genes encoding histone-like H1 proteins of eukaryotic origin have been found in the prokaryotic genome of C. trachomatis, an obligate intracellular pathogen.
Phylogeny
See also: Bacterial taxonomy
The phylogeny is based on 16S rRNA-based LTP release 123 by The All-Species Living Tree Project.[32]
Waddliaceae
Waddlia chondrophila Rurangirwa et al. 1999
Simkaniaceae
Simkania negevensis Everett, Bush & Andersen 1999
Parachlamydiaceae
Neochlamydia hartmannellae Horn et al. 2001
Parachlamydia acanthamoebae Everett, Bush & Andersen 1999
Chlamydiaceae
Chlamydophila pneumoniae (Grayston et al. 1989) Everett, Bush & Andersen 1999
Chlamydophila
C. felis Everett, Bush & Andersen 1999
C. psittaci (Lillie 1930) Everett, Bush & Andersen 1999
C. caviae Everett, Bush & Andersen 1999
C. abortus Everett, Bush & Andersen 1999
Chlamydia
C. pecorum Fukushi and Hirai 1992
C. muridarum Everett, Bush & Andersen 1999
C. suis Everett, Bush & Andersen 1999
C. trachomatis (Busacca 1935) Rake 1957 emend. Everett, Bush & Andersen 1999
Notes:
♠ Strains found at the National Center for Biotechnology Information (NCBI) but not listed in the List of Prokaryotic names with Standing in Nomenclature (LSPN)
♥ Strains not lodged at National Center for Biotechnology Information (NCBI) and or listed in the List of Prokaryotic names with Standing in Nomenclature (LPSN)
Taxonomy
The currently accepted taxonomy is based on the List of Prokaryotic names with Standing in Nomenclature (LPSN)[33] and the NCBI[34]
Genus ?"Candidatus Piscichlamydia" ♠ Draghi et al. 2004
Species "Candidatus Piscichlamydia salmonis" ♠ Draghi et al. 2004
Family ?"Candidatus Actinochlamydiaceae" ♠ Steigen et al. 2013
Genus "Candidatus Actinochlamydia" ♠ Steigen et al. 2013
Species "Candidatus Actinochlamydia clariae" ♠ Steigen et al. 2013
Family ?"Candidatus Clavichlamydiaceae" ♠ Horn 2011
Genus "Candidatus Clavichlamydia" ♠ corrig. Karlsen et al. 2008
Species "Candidatus Clavichlamydia salmonicola" ♠ corrig. Karlsen et al. 2008
Family ?"Candidatus Parilichlamydiaceae" ♠ Stride et al. 2013
Genus "Candidatus Parilichlamydia" ♠ Stride et al. 2013
Species "Candidatus Parilichlamydia carangidicola" ♠ Stride et al. 2013
Genus "Candidatus Similichlamydia" ♠ Stride et al. 2013
Species " Ca. S. latridicola" ♠ Stride et al. 2013
Species " Ca. S. labri" ♠ Steigen et al. 2015
Family Criblamydiaceae ♠ Thomas, Casson & Greub 2006
"Criblamydia" ♠ Thomas, Casson & Greub 2006
Species "Criblamydia sequanensis" ♠ Thomas, Casson & Greub 2006
"Estrella" ♠ Thomas et al. 2006
Species "Estrella lausannensis" ♠ Corsaro, Feroldi & Greub 2007
Family "Candidatus Rhabdochlamydiaceae" ♠ Corsaro et al. 2009
Genus "Candidatus Renichlamydia" ♠ Corsaro & Work 2012
Species "Candidatus Renichlamydia lutjani" ♠ Corsaro & Work 2012
Genus "Candidatus Rhabdochlamydia" ♠ Kostanjsek et al. 2004
Species "Ca. R. crassificans" ♠ Corsaro et al. 2007 ["Rickettsiella crassificans" Radek 2000]
Species "Ca. R. porcellionis" ♠ Kostanjsek et al. 2004 ["Chlamydia isopodii" Shay et al. 1985]
Family Chlamydiaceae Rake 1957 emend. Everett, Bush & Andersen 1999
Genus "Candidatus Amphibiichlamydia" ♠ Martel et al. 2012
Species "Ca. A. ranarum" ♠ Martel et al. 2013
Species "Ca. A. salamandrae" ♠ Martel et al. 2012
Genus "Candidatus Rubidus" ♠ Pagnier et al. 2015
Species "Candidatus Rubidus massiliensis" ♠ Pagnier et al. 2015
Genus Chlamydia Jones et al. 1945 emend. Everett, Bush & Andersen 1999
Species ?"C. ibidis" ♠ Vorimore et al. 2013
Species C. avium Sachse et al. 2015 ["Chlamydia avium" Sachse et al. 2014]
Species C. gallinacea Sachse et al. 2015 ["Chlamydia gallinacea" Sachse et al. 2014]
Species C. pecorum Fukushi & Hirai 1992 [Chlamydophila pecorum (Fukushi & Hirai 1992) Everett et al. 1999]
Species C. muridarum Everett, Bush & Andersen 1999 (agent of mouse pneumonitis)
Species C. abortus Everett, Bush & Andersen 1999 ["Chlamydia abortus" (Everett, Bush & Andersen 1999) Kuo et al. 2011]
Species C. caviae Everett, Bush & Andersen 1999 ["Chlamydia caviae" (Everett, Bush & Andersen 1999) Kuo et al. 2011]
Family Parachlamydiaceae Everett, Bush & Andersen 1999
Genus ?"Candidatus Mesochlamydia" ♠ Corsaro et al. 2012
Species "Candidatus Mesochlamydia elodeae" ♠ Corsaro et al. 2012
Genus ?"Candidatus Metachlamydia" ♠ Corsaro et al. 2010
Species "Candidatus Metachlamydia lacustris" ♠ Corsaro et al. 2010
Genus ?"Protochlamydia" ♠ Collingro et al. 2005
Species "Candidatus P. amoebophila" Collingro et al. 2005
Species "P. naegleriophila" ♠ Casson et al. 2006
Genus Neochlamydia Horn et al. 2001
Species Neochlamydia hartmannellae Horn et al. 2001 ["Neochlamydia hartmannellae" Horn et al. 2000; "Parachlamydia hartmannellae"]
Genus Parachlamydia Everett, Bush & Andersen 1999
Species Parachlamydia acanthamoebae Everett, Bush & Andersen 1999 ["Candidatus Parachlamydia acanthamoebae" Amann et al. 1997]
Family Simkaniaceae Everett, Bush & Andersen 1999
Genus ?"Candidatus Fritschea" Everett et al. 2005
Species "Candidatus F. bemisiae" Everett et al. 2005
Species "Candidatus F. eriococci" Everett et al. 2005
Genus ?"Candidatus Neptunochlamydia" ♠ Pizzetti et al. 2016
Species "Candidatus Neptunochlamydia vexilliferae" ♠ Pizzetti et al. 2016
Genus ?"Candidatus Syngnamydia" ♠ Fehr et al. 2013
Species "Ca. S. salmonis" ♠ Nylund et al. 2015
Species "Ca. S. venezia" ♠ Fehr et al. 2013
Genus Simkania Everett, Bush & Andersen 1999
Species Simkania negevensis Everett, Bush & Andersen 1999
Family Waddliaceae Rurangirwa et al. 1999
Genus Waddlia Rurangirwa et al. 1999
Species W. chondrophila Rurangirwa et al. 1999
Species "W. malaysiensis" ♥ Chua et al. 2005
References
^Tan, Ming; Sixt, Barbara S.; Siegl, Alexander; Müller, Constanze; Watzka, Margarete; Wultsch, Anna; Tziotis, Dimitrios; Montanaro, Jacqueline; Richter, Andreas; Schmitt-Kopplin, Philippe; Horn, Matthias (2013). "Metabolic Features of Protochlamydia amoebophila Elementary Bodies – A Link between Activity and Infectivity in Chlamydiae". PLoS Pathogens. 9 (8): e1003553. doi:10.1371/journal.ppat.1003553. ISSN 1553-7374. PMC 3738481. PMID 23950718.
^Jacquier N, Viollier PH, Greub G (2015). "The role of peptidoglycan in chlamydial cell division: towards resolving the chlamydial anomaly". FEMS Microbiol Rev. 39 (2): 262–275. doi:10.1093/femsre/fuv001. PMID 25670734.
^Malhotra M, Sood S, Mukherjee A, Muralidhar S, Bala M (September 2013). "Genital Chlamydia trachomatis: an update". Indian J. Med. Res. 138 (3): 303–16. PMC 3818592. PMID 24135174.
^Gupta RS (2011). "Origin of diderm (Gram-negative) bacteria: antibiotic selection pressure rather than endosymbiosis likely led to the evolution of bacterial cells with two membranes". Antonie van Leeuwenhoek. 100 (2): 171–182. doi:10.1007/s10482-011-9616-8. PMC 3133647. PMID 21717204.
^Horn M (2008). "Chlamydiae as symbionts in eukaryotes". Annu Rev Microbiol. 62: 113–131. doi:10.1146/annurev.micro.62.081307.162818. PMID 18473699.
^Horn M, Collingro A, Schmitz-Esser S, Beier CL, Purkhold U, Fartmann B, Brandt P, Nyakatura GJ, Droege M, Frishman D, Rattei T, Mewes HW, Wagner M (2004). "Illuminating the evolutionary history of chlamydiae". Science. 304 (5671): 728–730. doi:10.1126/science.1096330. PMID 15073324.
^Philip S. Brachman and Elias Abrutyn (2009-07-23). Bacterial Infections of Humans: Epidemiology and Control. ISBN 9780387098425.
^Moulder J (1966). "The relation of the psittacosis group (Chlamydiae) to bacteria and viruses". Annu Rev Microbiol. 20: 107–30. doi:10.1146/annurev.mi.20.100166.000543. PMID 5330228.
^ abcdefgGupta RS, Naushad S, Chokshi C, Griffiths E, Adeolu M (2015). "A phylogenomic and molecular markers based analysis of the phylum Chlamydiae: proposal to divide the class Chlamydiia into two orders, Chlamydiales and Parachlamydiales ord. nov., and emended description of the class Chlamydiia". Antonie van Leeuwenhoek. 108 (3): 765–781. doi:10.1007/s10482-015-0532-1. PMID 26179278.
^ abOren A, Garrity GM (2016). "List of new names and new combinations previously effectively, but not validly, published". Int J Syst Evol Microbiol. 66 (7): 2463–6. doi:10.1099/ijsem.0.001149. PMC 5817221. PMID 27530111.
^Storz J, Page LA (1971). "Taxonomy of the Chlamydiae: reasons for classifying organisms of the genus Chlamydia, family Chlamydiaceae, in a separate order, Chlamydiales ord. nov". International Journal of Systematic Bacteriology. 21 (4): 332–334. doi:10.1099/00207713-21-4-332.
^Garrity GM, Boone DR (2001). Bergey's Manual of Systematic Bacteriology Volume 1: The Archaea and the Deeply Branching and Phototrophic Bacteria (2nd ed.). Springer. ISBN 978-0-387-98771-2.
^ abEverett K, Thao M, Horn M, Dyszynski G, Baumann P (2005). "Novel chlamydiae in whiteflies and scale insects: endosymbionts 'Candidatus Fritschea bemisiae' strain Falk and 'Candidatus Fritschea eriococci' strain Elm". Int J Syst Evol Microbiol. 55 (Pt 4): 1581–7. doi:10.1099/ijs.0.63454-0. PMID 16014485. Archived from the original on 2006-08-27. Retrieved 2006-07-05. Cite uses deprecated parameter |dead-url= (help)
^Sayers; et al. "Chlamydiia". National Center for Biotechnology Information (NCBI) taxonomy database. Retrieved 2016-10-24.
^Everett KD, Bush RM, Andersen AA (1999). "Emended description of the order Chlamydiales, proposal of Parachlamydiaceae fam. nov. and Simkaniaceae fam. nov., each containing one monotypic genus, revised taxonomy of the family Chlamydiaceae, including a new genus and five new species, and standards for the identification of organisms". Int J Syst Bacteriol. 49 (Pt 2): 415–440. doi:10.1099/00207713-49-2-415. PMID 10319462.
^Rurangirwa FR, Dilbeck PM, Crawford TB, McGuire TC, McElwain TF (1999). "Analysis of the 16S rRNA gene of micro-organism WSU 86-1044 from an aborted bovine foetus reveals that it is a member of the order Chlamydiales: proposal of Waddliaceae fam. nov., Waddlia chondrophila gen. nov., sp. nov". Int J Syst Bacteriol. 49 (Pt 2): 577–581. doi:10.1099/00207713-49-2-577. PMID 10319478.
^Thomas V, Casson N, Greub G (2006). "Criblamydia sequanensis, a new intracellular Chlamydiales isolated from Seine river water using amoebal co-culture". Environ Microbiol. 8 (12): 2125–2135. doi:10.1111/j.1462-2920.2006.01094.x. PMID 17107554.
^Stride MC, Polkinghorne A, Miller TL, Groff JM, Lapatra SE, Nowak BF (2013). "Molecular characterization of "Candidatus Parilichlamydia carangidicola," a novel Chlamydia-like epitheliocystis agent in yellowtail kingfish, Seriola lalandi (Valenciennes), and the proposal of a new family, "Candidatus Parilichlamydiaceae" fam. nov. (order Chlamydiales)". Appl Environ Microbiol. 79 (5): 1590–1597. doi:10.1128/AEM.02899-12. PMC 3591964. PMID 23275507.
^Kuo C-C, Horn M, Stephens RS (2011) Order I. Chlamydiales. In: Bergey’s Manual of Systematic Bacteriology, vol. 4, 2nd ed. pp. 844-845. Eds Krieg N, Staley J, Brown D, Hedlund B, Paster B, Ward N, Ludwig W, Whitman W. Springer-: New York.
^ abcdGriffiths E, Ventresca MS, Gupta RS (2006). "BLAST screening of chlamydial genomes to identify signature proteins that are unique for the Chlamydiales, Chlamydiaceae, Chlamydophila and Chlamydia groups of species". BMC Genomics. 7: 14. doi:10.1186/1471-2164-7-14. PMC 1403754. PMID 16436211.
^Sachse K, Bavoil PM, Kaltenboeck B, Stephens RS, Kuo CC, Rossello-Mora R, Horn M (2015). "Emendation of the family Chlamydiaceae: proposal of a single genus, Chlamydia, to include all currently recognized species". Appl Microbiol. 38 (2): 99–103. doi:10.1016/j.syapm.2014.12.004. hdl:10261/123714. PMID 25618261.
^Oren A, Garrity GM (2015). "List of new names and new combinations previously effectively, but not validly, published". Int J Syst Evol Microbiol. 65 (7): 2017–2025. doi:10.1099/ijs.0.000317. PMC 5817221.
^Greub G, Raoult D (2003). "History of the ADP/ATP-Translocase-Encoding Gene, a Parasitism Gene Transferred from a Chlamydiales Ancestor to Plants 1 Billion Years Ago". Appl Environ Microbiol. 69 (9): 5530–5. doi:10.1128/AEM.69.9.5530-5535.2003. PMC 194985. PMID 12957942.
^ abHorn M, Collingro A, Schmitz-Esser S, Beier C, Purkhold U, Fartmann B, Brandt P, Nyakatura G, Droege M, Frishman D, Rattei T, Mewes H, Wagner M (2004). "Illuminating the evolutionary history of chlamydiae". Science. 304 (5671): 728–30. doi:10.1126/science.1096330. PMID 15073324.
^Griffiths E, Petrich AK, Gupta RS (August 2005). "Conserved indels in essential proteins that are distinctive characteristics of Chlamydiales and provide novel means for their identification". Microbiology. 151 (Pt 8): 2647–57. doi:10.1099/mic.0.28057-0. PMID 16079343.
^Gupta RS, Griffiths E (December 2006). "Chlamydiae-specific proteins and indels: novel tools for studies". Trends Microbiol. 14 (12): 527–35. doi:10.1016/j.tim.2006.10.002. PMID 17049238.
^Ward N, Rainey F, Hedlund B, Staley J, Ludwig W, Stackebrandt E (2000). "Comparative phylogenetic analyses of members of the order Planctomycetales and the division Verrucomicrobia: 23S rRNA gene sequence analysis supports the 16S rRNA gene sequence-derived phylogeny". Int J Syst Evol Microbiol. 50 (6): 1965–72. doi:10.1099/00207713-50-6-1965. PMID 11155969.
^Teeling H, Lombardot T, Bauer M, Ludwig W, Glöckner F (2004). "Evaluation of the phylogenetic position of the planctomycete 'Rhodopirellula baltica' SH 1 by means of concatenated ribosomal protein sequences, DNA-directed RNA polymerase subunit sequences and whole genome trees". Int J Syst Evol Microbiol. 54 (Pt 3): 791–801. doi:10.1099/ijs.0.02913-0. PMID 15143026.
^Griffiths E, Gupta RS (August 2007). "Phylogeny and shared conserved inserts in proteins provide evidence that Verrucomicrobia are the closest known free-living relatives of chlamydiae". Microbiology. 153 (Pt 8): 2648–54. doi:10.1099/mic.0.2007/009118-0. PMID 17660429.
^Corsaro D, Greub G (2006). "Pathogenic Potential of Novel Chlamydiae and Diagnostic Approaches to Infections Due to These Obligate Intracellular Bacteria". Clin Microbiol Rev. 19 (2): 283–97. doi:10.1128/CMR.19.2.283-297.2006. PMC 1471994. PMID 16614250.
^All-Species Living Tree Project [1]. Data extracted from the "16S rRNA-based LTP release 123 (full tree)" (PDF). Silva Comprehensive Ribosomal RNA Database. Retrieved 2016-03-20.
^List of Prokaryotic names with Standing in Nomenclature. Data extracted from the "Chlamydiae". Archived from the original on 2011-06-13. Retrieved 2016-03-20. Cite uses deprecated parameter |deadurl= (help)
^National Center for Biotechnology Information [2] Data extracted from Sayers; et al. "Chlamydiae". National Center for Biotechnology Information. Retrieved 2016-03-20.
External links
Chlamydiae.com, a comprehensive information source from Dr. Michael Ward (Professor of Medical Microbiology in the University of Southampton)
v
t
e
Prokaryotes: Bacteria classification (phyla and orders)
Domain
Archaea
Bacteria
Eukaryota
(Supergroup
Plant
Hacrobia
Heterokont
Alveolata
Rhizaria
Excavata
Amoebozoa
Opisthokonta
Animal
Fungi)
G-/ OM
Terra-/ Glidobacteria (BV1)
Eobacteria
Deinococcus–Thermus
Deinococcales
Thermales
Chloroflexi
Anaerolineales
Caldilineales
Chloroflexales
Herpetosiphonales
Dehalococcoidales
Ktedonobacterales
Thermogemmatisporales
Thermomicrobiales
Sphaerobacterales
other glidobacteria
Thermodesulfobacteria
thermophiles
Aquificae
Thermotogae
Cyanobacteria
Proteobacteria (BV2)
Alpha
Caulobacterales
Kiloniellales
Kordiimonadales
Magnetococcales
Parvularculales
Rhizobiales
Rhodobacterales
Rhodospirillales
Rickettsiales
Sneathiellales
Sphingomonadales
Beta
Burkholderiales
Hydrogenophilales
Methylophilales
Neisseriales
Nitrosomonadales
Procabacteriales
Rhodocyclales
Gamma
Acidithiobacillales
Aeromonadales
Alteromonadales
Cardiobacteriales
Chromatiales
Enterobacteriales
Legionellales
Methylococcales
Oceanospirillales
Orbales
Pasteurellales
Pseudomonadales
Salinisphaerales
Thiotrichales
Vibrionales
Xanthomonadales
Delta
Bdellovibrionales
Desulfarculales
Desulfobacterales
Desulfovibrionales
Desulfurellales
Desulfuromonadales
Myxococcales
Syntrophobacterales
Syntrophorhabdales
Epsilon
Campylobacterales
Nautiliales
Zeta
Mariprofundales
BV4
Spirochaetes
Spirochaetes
Sphingobacteria (FCB group)
Fibrobacteres
Chlorobi
Chlorobiales
Ignavibacteriales
Bacteroidetes
Bacteroidales
Cytophagales
Flavobacteriales
Sphingobacteriales
Planctobacteria/ (PVC group)
Chlamydiae
Lentisphaerae
Lentisphaerales
Oligosphaerales
Victivallales
Planctomycetes
Phycisphaerales
Planctomycetales
Verrucomicrobia
Puniceicoccales
Opitutales
Chthoniobacterales
Verrucomicrobiales
"Poribacteria"
Other GN
Acidobacteria
Acidobacteriales
Acanthopleuribacterales
Holophagales
Solibacterales
Armatimonadetes
Armatimonadales
Chthonomonadales
Fimbriimonadales
Caldiserica
Chrysiogenetes
Deferribacteres
Dictyoglomi
Elusimicrobia
Fusobacteria
Gemmatimonadetes
Nitrospirae
Synergistetes
G+/ no OM
Firmicutes (BV3)
Bacilli
Bacillales
Lactobacillales
Aphragmobacteria
Erysipelotrichia
Erysipelotrichiales
Mollicutes
Mycoplasmatales
Entomoplasmatales
Anaeroplasmatales
Acholeplasmatales
Haloplasmatales
Clostridia
Clostridiales
Halanaerobiales
Thermoanaerobacteriales
Natranaerobiales
Negativicutes
Selenomonadales
Thermolithobacteria
Thermolithobacterales
Actinobacteria (BV5)
Actinobacteria
Actinomycetales
Bifidobacteriales
Acidimicrobiia
Acidimicrobiales
Coriobacteriia
Coriobacteriales
Nitriliruptoria
Euzebyales
Nitriliruptorales
Rubrobacteria
Gaiellales
Rubrobacterales
Thermoleophilales
Solirubrobacterales
Incertae sedis
†Archaeosphaeroides
†Eobacterium
†Leptotrichites
Source: Bergey's Manual (2001–2012). Alternative views: Wikispecies.
Chlamydial biology and its associated virulence blockers.
Beeckman DS, De Puysseleyr L, De Puysseleyr K, Vanrompay D.Author information Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University , Coupure Links 653, B-9000 Ghent , Belgium.AbstractAbstract Chlamydiales are obligate intracellular parasites of eukaryotic cells. They can be distinguished from other Gram-negative bacteria through their characteristic developmental cycle, in addition to special biochemical and physical adaptations to subvert the eukaryotic host cell. The host spectrum includes humans and other mammals, fish, birds, reptiles, insects and even amoeba, causing a plethora of diseases. The first part of this review focuses on the specific chlamydial infection biology and metabolism. As resistance to classical antibiotics is emerging among Chlamydiae as well, the second part elaborates on specific compounds and tools to block chlamydial virulence traits, such as adhesion and internalization, Type III secretion and modulation of gene expression.
Critical reviews in microbiology.Crit Rev Microbiol.2014 Nov;40(4):313-28. doi: 10.3109/1040841X.2012.726210. Epub 2012 Nov 7.
Abstract Chlamydiales are obligate intracellular parasites of eukaryotic cells. They can be distinguished from other Gram-negative bacteria through their characteristic developmental cycle, in addition to special biochemical and physical adaptations to subvert the eukaryotic host cell. The host spec
Wan C, Latter JL, Amirshahi A, Symonds I, Finnie J, Bowden N, Scott RJ, Cunningham KA, Timms P, Beagley KW.Author information Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Qld, Australia.AbstractPROBLEM: Susceptibility to Chlamydia trachomatis infection is increased by oral contraceptives and modulated by sex hormones. We therefore sought to determine the effects of female sex hormones on the innate immune response to C. trachomatis infection.
American journal of reproductive immunology (New York, N.Y. : 1989).Am J Reprod Immunol.2014 Feb;71(2):165-77. doi: 10.1111/aji.12168. Epub 2013 Nov 11.
PROBLEM: Susceptibility to Chlamydia trachomatis infection is increased by oral contraceptives and modulated by sex hormones. We therefore sought to determine the effects of female sex hormones on the innate immune response to C. trachomatis infection.METHOD OF STUDY: ECC-1 endometrial cells, pre-t
Re-interpretation of the evidence for the PVC cell plan supports a Gram-negative origin.
Devos DP.Author information Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany, dpdevos@upo.es.AbstractThe PVC superphylum consists of the core phyla Planctomycetes, Verrucomicrobia and Chlamydiae, together with additional ones. Historically, the cell plan of PVC bacteria has been interpreted as an 'exception' to the classical Gram-negative (Gneg) one (Fuerst Antonie van Leeuwenhoek 104:451-466, 2013). However recent genomic and electron-microscopy data have argued against this exceptional status and suggested the need for a reinterpretation of the data in a more classical framework. In this perspective, I evaluate the arguments that have recently been presented by Fuerst as supporting the PVC cell plan as an 'exception' and present an alternative interpretation that is based on proposed evolutionary events that may have shaped the PVC genomes and proteomes. This interpretation supports the alternative proposal that the PVC cell plan is derived from a Gneg one.
Antonie van Leeuwenhoek.Antonie Van Leeuwenhoek.2014 Feb;105(2):271-4. doi: 10.1007/s10482-013-0087-y. Epub 2013 Dec 1.
The PVC superphylum consists of the core phyla Planctomycetes, Verrucomicrobia and Chlamydiae, together with additional ones. Historically, the cell plan of PVC bacteria has been interpreted as an 'exception' to the classical Gram-negative (Gneg) one (Fuerst Antonie van Leeuwenhoek 104:451-466, 2013
… In addition to bacteria previously associated with human/animal diseases, such as Anaplasma, Bartonella, Borrelia, Ehrlichia, Francisella and Rickettsia, BLSOM analysis detected microorganisms belonging to the phylum Chlamydiae in some tick species. …
Microbes and infection / Institut Pasteur 15(3), 192-200, 2013-03
… Meanwhile, interferon (IFN)-γ is a crucial factor for eliminating chlamydiae from infected cells through indoleamine 2,3-dioxygenase (IDO) expression, resulting in depletion of tryptophan. …
Welcome to www.chlamydiae.com The comprehensive reference and education wiki on Chlamydia and the Chlamydiales Everybody: Understandable authoritative health information on chlamydial genital tract infections. Health ...
Chlamydia [klah-mid´e-ah] a widespread genus of gram-negative, nonmotile bacteria. They are obligate intracellular parasites that are totally dependent on the ... Chlamydiae are obligate intracellular bacteria that can multiply only in ...