出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2013/08/08 15:13:49」(JST)
ブルーストリパノソーマ Trypanosoma brucei | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ブルーストリパノソーマ
|
||||||||||||||||||||||||
分類 | ||||||||||||||||||||||||
|
||||||||||||||||||||||||
学名 | ||||||||||||||||||||||||
Trypanosoma brucei Plimmer et Bradford, 1899 | ||||||||||||||||||||||||
和名 | ||||||||||||||||||||||||
ブルーストリパノソーマ |
ブルーストリパノソーマ(Trypanosoma brucei)はトリパノソーマ属に属する寄生性原虫の1種。ツェツェバエによって媒介される住血性の鞭毛虫であり、ヒトの睡眠病、動物のアフリカトリパノソーマ症などの原因となる。
形態的には錐鞭毛型と上鞭毛型に大別でき、このうち錐鞭毛型は血流型(スレンダー型とスタンピー型)・プロサイクリック型・メタサイクリック型に分類される。前鞭毛型や無鞭毛型は基本的に生じない。
ツェツェバエでの発育には3週間ほどを要する。
ブルーストリパノソーマの細胞核ゲノムは1メガ塩基対以上の大きな染色体が11対と、それに満たない(50-500キロ塩基対)100種ほどの小さな染色体群からなっている。この小さな染色体群には主に抗原多型に関与する遺伝子が存在している。
ミトコンドリアには通常のゲノム(マキシサークル)の他に多数のミニサークルが存在している。マキシサークルDNA上のおよそ半数の遺伝子はそのままでは意味を成さず、転写後に膨大な量のRNA編集を経て初めて翻訳可能になるのだが、ミニサークルDNA上にこのRNA編集に必要なガイドRNAがコードされている。
細胞表層にはペリクル下微小管が細胞の前後軸方向に走っている。極性は細胞前方が-端、後ろが+端である。これらはほぼ均等間隔になっており、細胞の成長に伴って既存の微小管2本の間に新しい微小管が配置される。
鞭毛は一般的な9+2構造の軸糸とそれに沿った副鞭毛桿 (paraflagellar rod; paraxial rod) から成る。鞭毛は原虫の運動に用いられるほか、プロサイクリック型がツェツェバエ中腸に接着するのにも使われる。
細胞表面は血流型では変異性表面糖タンパク質 (variable surface glycoprotein; VSG) 、プロサイクリック型では procyclin という糖タンパク質によって密に包まれている。
VSGはブルーストリパノソーマが宿主の免疫系から継続的に逃れ続けて慢性的な感染を維持するのに中心的な役割を果たしている [1]。 VSGは原虫表面を完全に覆っており、免疫系はVSG以外の構成要素(チャネル・トランスポーター・レセプターなど)を認識することができない[2]。そのうえVSGは数千種の遺伝子の中から周期的に1つだけが選択されるので、免疫系が特定のVSGに対する免疫を獲得してもVSGが変化することで無効化されてしまう。
ブルーストリパノソーマのゲノム解読により、数千種におよぶ巨大なVSG遺伝子プールの存在が明らかになった。これらのうち1度に1種類だけが発現しており、残りは全てサイレントである。VSGは抗原性が高いため、免疫系はこの特定のVSGに対する免疫応答を獲得して原虫を排除することができる。しかし原虫は細胞分裂の際に1%ほどの確率で発現するVSG遺伝子を変化させる[3]。
免疫系が新しいVSGを認識できるようになるためには数日を要するので、この間に原虫は増殖する。この原虫はその後免疫系によって排除されるが、その頃には次のVSG遺伝子にスイッチした原虫が出現することを繰り返す。こうして全ての原虫を排除することができずに慢性的な感染が継続することになる。[1]
VSG遺伝子の塩基配列は変異が非常に大きいが、防御能を発揮するためのタンパク質構造はよく保存されている。C末端100残基ほどは4つのαヘリックスが束になる構造をとり、ここは配列上もよく保存されている。そのC末端ドメインの周りを300から350残基からなるN末端ドメインが取り巻いている。N末端ドメインは配列上は変異が大きいものの、三次構造はよく保存されていて細胞表面を物理的に隠蔽できるようになっている。VSGはホモ二量体をつくり、GPIアンカーによって細胞膜に結合している。
ブルーストリパノソーマのゲノム中には多数のVSG遺伝子があるが、そのうち5%ほどがそのまま発現可能な完全長遺伝子で、それ以外は直接には発現できない偽遺伝子となっている。これら偽遺伝子は、相同組み換えによってモザイクを生じることにより利用可能になる。[4] これにより原虫は無限のVSG遺伝子群を持つことになり、それゆえワクチン開発が困難になっている。[5]
発現しているVSG遺伝子は常に染色体末端(テロメア)の発現領域に存在している。発現領域にあるVSG遺伝子は、多数の発現領域関連遺伝子群(Expression Site-Associated Genes; ESAGs)と共にポリシストロニックな転写・翻訳が行われている。ただ発現領域は20箇所ほどあるが、実際にはそのうち1箇所だけしか同時に発現されない。これはいくつかのメカニズムの組み合わせで実現されているようであるが、詳しいことは未解明である。[6]。
VSG遺伝子の発現転換は、それまで発現していなかった発現領域が発現されるようになる場合と、発現している発現領域のVSG遺伝子が変化する場合とがある。VSG遺伝子の候補は、ミニクロモソームや、染色体内部の反復部位に多数存在しており、ゲノム全体の10%ほどがこうした遺伝子候補で占められている。これらのうちいずれかが組み換えによって発現領域に移動することで、新たなVSG遺伝子が生じることになる。
トリパノソーマ属は、古典的には鞭毛虫綱原鞭毛虫目トリパノソーマ科、分子系統解析に基づく分類体系ではユーグレノゾア門キネトプラスト綱トリパノソーマ目トリパノソーマ科に所属する[7]。さらに発育パターンによって2群8亜属に分類されており、ブルーストリパノソーマはサリバリア類(section Salivaria, 唾棲類)Trypanozoon亜属となる。この亜属はツェツェバエの中腸および唾液腺で増殖し、発育終末型が唾液中に排出されることを特徴とするが、後に述べるように例外的な生活環を持つものもある。
ウマ、ロバ、ラクダ、イヌで致命的なbrucei、ヒトのガンビアトリパノソーマ症(慢性の睡眠病)の原因となるgambiense、ヒトのローデシアトリパノソーマ症(急性の睡眠病)の原因となるrhodesienseの3亜種が知られている。またラクダなどのスーラ病の病原体であるT. evansiと、ウマの媾疫の病原体であるT. equiperdumも生物学的にはブルーストリパノソーマの変異株ないし亜種だと考えられている。 [8]
これまでの研究 [10] [11] [8] が示唆するとおりブルーストリパノソーマとエバンストリパノソーマが同一種だとすると、この種は国際動物命名規約における「先取権の原則」により当然Trypanosoma evansiと呼ばなければならない。
なお中南米でシャーガス病を引き起こすのはクルーズトリパノソーマ(Trypanosoma cruzi)という別種であり、同じトリパノソーマ属の原虫であるが性状にかなりの差がある。
1901年、イギリス植民地の外科医Robert Michael Forde(1861-1948)がガンビアの船長の血液から「虫」を発見し、それを数ヶ月後に内科医Joseph Everett Dutton (1874-1905) がTrypanosoma属の原虫と同定してTrypanosoma gambienseと命名した。1902年、イタリアの病理学者アルド・カステラーニ (1878-1971)がアフリカ睡眠病の患者の髄液からトリパノソーマを見出し、これが病原体であると考えた。
すでに1895年にはスコットランドの病理学者デヴィッド・ブルース (David Bruce, 1855-1931) がトリパノソーマをウシのナガナ病の病原体として発見していたが、彼は1903年にトリパノソーマがツェツェバエによって媒介されるという証拠を得る。1910年にはアフリカ睡眠病の2番目の病原体としてT. rhodesienseが発見される。
学名は、ブルースがイギリスに送った感染したイヌを調査したPlimmerとBradfordにより、ブルースへの献名として命名された(この時はT. bruciiと命名したが、この種小名は綴りが間違っており、現在ではT. bruceiと綴る)。
トリパノソーマ属のうちブルーストリパノソーマの属する唾棲類の分岐はおよそ3億年前に遡ると推定されるが、媒介者であるツェツェバエの出現が3500万年前であるので、この時期に現在のものに近い原虫が現れたと考えられる。以来野生動物の寄生虫として長い時間をかけて適応しており、そのため野生動物に対してはほとんどの場合特に病原性を示さない。一方家畜がツェツェバエ生息地域に導入されたのは1万年ほどのごく最近のことであり、それゆえいまだ家畜に対して病原性を示すものと考えられる。また樹上性の霊長類がトリパノソーマ症にかかるのに対して、ヒトはたいていのトリパノソーマに対して耐性を獲得している。ブルーストリパノソーマの2亜種はごく限られた例外であり、おそらく比較的最近になってヒトに対して病原性を示すようになったものである。ガンビアトリパノソーマはより適応が進んでおり、一方ローデシアトリパノソーマはいまだヒトには適応していないため急性の症状を示すと考えられる。
Trypanosoma brucei | |
---|---|
Trypanosoma brucei brucei TREU667 (Bloodstream form, phase contrast picture. Black bar indicates 10 µm.) | |
Scientific classification | |
Kingdom: | Protista |
Phylum: | Euglenozoa |
Class: | Kinetoplastea |
Order: | Trypanosomatida |
Genus: | Trypanosoma |
Species: | T. brucei |
Binomial name | |
Trypanosoma brucei Plimmer & Bradford, 1899 |
|
Subspecies | |
T. b. brucei |
Trypanosoma brucei is a species of Salivarian trypanosome which causes African trypanosomiasis, known also as sleeping sickness in humans and nagana in animals. T. brucei has traditionally been grouped into three sub-species or strains: T. b. brucei, T. b. gambiense and T. b. rhodesiense, the first of which is unable to infect humans.
Transmission of T. brucei between mammal hosts is usually by an insect vector, the tsetse fly. T. brucei parasites undergo complex morphological changes as they move between insect and mammal over the course of their life cycle. The mammalian bloodstream forms are notable for their variant surface glycoprotein (VSG) coats, which undergo remarkable antigenic variation, enabling persistent evasion of host adaptive immunity and chronic infection. There is an urgent need for the development of new drug therapies as current treatments can prove fatal to the patient.
Whilst not historically regarded as T. brucei subspecies due to their different means of transmission, clinical presentation, and loss of kinetoplast DNA, genetic analyses reveal that T. equiperdum and T. evansi are evolved from parasites very similar to T. b. brucei, and are thought to be members of the brucei clade.[1]
The insect vector for T. brucei is the tsetse fly (genus Glossina). The initial site of infection is the midgut of the fly (procyclic life cycle stage) and as the infection progresses it migrates via the proventriculus to the salivary glands where it attaches to the salivary gland surface (linked with a differentiation into the epimastigote life cycle stage). In the salivary glands some parasites detach and undergo adaptations (differentiation into the metacyclic life cycle stage) in preparation for injection to the mammalian host with the fly saliva on biting. In the mammal host the parasite lives within the bloodstream (slender bloodstream life cycle stage). Some parasites undergo adaptations (differentiation into the stumpy bloodstream life cycle stage) where it can reinfect the fly vector as it takes a blood meal after biting. In later stages of a T. brucei infection of a mammalian host the parasite may migrate from the bloodstream to also infect the lymph and cerebrospinal fluids.
In addition to the major form of transmission via the tsetse fly T. brucei may be transferred between mammals via bodily fluid exchange, such as by blood transfusion or sexual contact, although this is thought to be rare [2] [3].
There are three different sub-species of T. brucei, which cause different variants of trypanosomiasis.
The structure of the cell is fairly typical of eukaryotes (see eukaryotic cell). All major organelles are seen, including the nucleus, mitochondria, endoplasmic reticulum, Golgi apparatus etc. Unusual features include the single large mitochondria with the mitochondrial DNA structure known as the kinetoplast, and its association with the basal body of the flagellum. The cytoskeleton is made up of microtubules. The cell surface of the bloodstream form features a dense coat of variable surface glycoproteins (VSGs) which is replaced by an equally dense coat of procyclins when the parasite differentiates into the procylic in the tsetse fly midgut.
Trypanosomatids show several different classes of cellular organisation of which two are adopted by Trypanosoma brucei at different stages of the life cycle:
These names are derived from the Greek mastig- meaning whip, referring to the trypanosome's whip-like flagellum.
T. brucei is found as a trypomastigote in the slender, stumpy, procyclic and metacyclic forms. The procylic form differentiates to the proliferitive epimastigote form in the salivary glands of the insect. Unlike some other trypanosomatids, the promastigote and amastigote form do not form part of the T.brucei life cycle.
The genome of T. brucei is made up of:[6]
Most genes are held on the large chromosomes, with the minichromosomes carrying only VSG genes. The genome has been sequenced and is available online [1].
The mitochondrial genome is found condensed into the kinetoplast, an unusual feature unique to the kinetoplastea class. The kinetoplast and the basal body of the flagellum are strongly associated via a cytoskeletal structure.
Main section: VSG coat
The surface of the trypanosome is covered by a dense coat of Variable Surface Glycoprotein (VSG), which allows persistence of an infecting trypanosome population in the host. See below.
The cytoskeleton is predominantly made up of microtubules, forming a subpellicular corset. The microtubules lie parallel to each other along the long axis of the cell, with the number of microtubules at any point roughly proportional to the circumference of the cell at that point. As the cell grows (including for mitosis) additional microtubules grow between the existing tubules, leading to semiconservative inheritance of the cytoskeleton. The microtubules are orientated + at the posterior and - at the anterior.
Microfilament and intermediate filaments do not play a role in the cytoskeleton.
The trypanosome flagellum has two main structures. It is made up of a typical flagellar axoneme which lies parallel to the paraflagellar rod, a lattice structure of proteins unique to the kinetoplastida, euglenoids and dinoflagellates.
The microtubules of the flagellar axoneme lie in the normal 9+2 arrangement, orientated with the + at the anterior end and the - in the basal body. The a cytoskeletal structure extends from the basal body to the kinetoplast. The flagellum is bound to the cytoskeleton of the main cell body by four specialised microtubules, which run parallel and in the same direction to the flagellar tubulin.
The flagellar function is twofold - locomotion via oscilations along the attached flagellum and cell body, and attachment to the fly gut during the procyclic phase.
The surface of the trypanosome is covered by a dense coat of ~5 x 106 molecules of Variable Surface Glycoprotein (VSG).[7] This coat enables an infecting T. brucei population to persistently evade the host's immune system, allowing chronic infection. The two properties of the VSG coat that allow immune evasion are:
The cell surface of the bloodstream form features a dense coat of variable surface glycoproteins (VSGs) which is replaced by an equally dense coat of procyclins when the parasite differentiates into the procylic form in the tsetse fly midgut.
VSG is highly immunogenic, and an immune response raised against a specific VSG coat will rapidly kill trypanosomes expressing this variant. Antibody-mediated trypanosome killing can also be observed in vitro by a complement-mediated lysis assay. However, with each cell division there is a possibility that one or both of the progeny will switch expression to change the VSG variant that is being expressed. The frequency of VSG switching has been measured to be approximately 0.1% per division.[9] As T. brucei populations can peak at a size of 1011 within a host [10] this rapid rate of switching ensures that the parasite population is constantly diverse. A diverse range of coats expressed by the trypanosome population means that the immune system is always one step behind: it takes several days for an immune response against a given VSG to develop, giving the population time to diversify as individuals undergo further switching events. Reiteration of this process prevents extinction of the infecting trypanosome population, allowing chronic persistence of parasites in the host, enhancing opportunities for transmission. The clinical effect of this cycle is successive 'waves' of parasitaemia (trypanosomes in the blood).[7]
VSG genes are hugely variable at the sequence level. However, different VSG variants have strongly conserved structural features, allowing them to perform a similar shielding function [11]. VSGs are made up of a highly variable N terminal domain of around 300 to 350 amino acids, and a more conserved C terminal domain of around 100 amino acids. N-terminal domains dimerise to form a bundle of four alpha helices, around which hang smaller structural features. VSG is anchored to the cell membrane via a glycophosphatidylinositol (GPI) anchor—a covalent linkage from the C-terminus, to approximately four sugars, to a phosphatidylinositol phospholipid acid which lies in the cell membrane.
The source of VSG variability during infection is a large 'archive' of VSG genes present in the T. brucei genome. Some of these are full-length, intact genes; others are pseudogenes) typically with frameshift mutations, premature stop codons, or fragmentation [12]. Expression of an antigenically different VSG can occur by simply switching to a different full-length VSG gene. In addition, chimeric or 'mosaic' VSG genes can be generated by combining segments from more than one silent VSG gene. The formation of mosaic VSGs allows the (partial) expression of pseudogene VSGs, which can constitute the major portion of the VSG archive, and can contribute directly to antigenic variation, vastly increasing the trypanosome's capacity for immune evasion and potentially posing a major problem for vaccine development.[13]
One major focus in trypanosome research is how all but one of the VSG genes are kept silent at a given time, and how these the active VSG is switched. The expressed VSG is always located in an Expression Site (ES), which are specialised expression loci found at the telomeres of some of the large and intermediate chromosomes. Each ES is a polycistronic unit, containing a number of Expression Site-Associated Genes (ESAGs) all expressed along with the active VSG. While multiple ES exist, only a single one is ever active at one time. A number of mechanisms appear to be involved in this process, but the exact nature of the silencing is still unclear.[14]
The expressed VSG can be switched either by activating a different expression site (and thus changing to express the VSG in that site), or by changing the VSG gene in the active site to a different variant. The genome contains many copies of VSG genes, both on minichromosomes and in repeated sections in the interior of the chromosomes. These are generally silent, typically with omitted sections or premature stop codons, but are important in the evolution of new VSG genes. It is estimated up to 10% of the T.brucei genome may be made up of VSG genes or pseudogenes. Any of these genes can be moved into the active site by recombination for expression. Again, the exact mechanisms that control this are unclear, but the process seems to rely on DNA repair machinery and a process of homologous recombination.[15]
The mitotic division of T.brucei is unusual compared to most eukaryotes. The nuclear membrane remains intact and the chromosomes do not condense during mitosis. The basal body, unlike the centrosome of most eukaryotic cells, does not play a role in the organisation of the spindle and instead is involved in division of the kinetoplast.
Stages of mitosis:
|
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
リンク元 | 「ブルーストリパノソーマ」「ブルセイトリパノソーマ」「トリパノソーマ・ブルセイ」「T. brucei」 |
拡張検索 | 「Trypanosoma brucei gambiense」「Trypanosoma brucei rhodesiense」「Trypanosoma brucei brucei」 |
-Trypanosoma gambiense
.