Wikipedia preview
出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2015/10/18 12:17:55」(JST)
[Wiki en表示]
Solute carrier family 1 (glial high affinity glutamate transporter), member 3 |
Identifiers |
Symbols |
SLC1A3 ; EA6; EAAT1; GLAST; GLAST1 |
External IDs |
OMIM: 600111 MGI: 99917 HomoloGene: 20882 ChEMBL: 3085 GeneCards: SLC1A3 Gene |
Gene ontology |
Molecular function |
• L-glutamate transmembrane transporter activity
• high-affinity glutamate transmembrane transporter activity
• glutamate binding
• sodium:dicarboxylate symporter activity
|
Cellular component |
• mitochondrial inner membrane
• plasma membrane
• cell surface
• membrane
• integral component of membrane
• basolateral plasma membrane
• neuronal cell body
• dendritic spine
• fibril
|
Biological process |
• neurotransmitter uptake
• positive regulation of defense response to virus by host
• glutamate biosynthetic process
• ion transport
• synaptic transmission
• neurotransmitter secretion
• sensory perception of sound
• response to light stimulus
• gamma-aminobutyric acid biosynthetic process
• response to wounding
• glutamate secretion
• cranial nerve development
• auditory behavior
• response to drug
• malate-aspartate shuttle
• response to antibiotic
• cell morphogenesis involved in neuron differentiation
• positive regulation of synaptic transmission
• neuromuscular process controlling balance
• L-glutamate import
• transmembrane transport
• D-aspartate import
• L-glutamate transmembrane transport
• activation of mitophagy in response to mitochondrial depolarization
|
Sources: Amigo / QuickGO |
|
RNA expression pattern |
|
More reference expression data |
Orthologs |
Species |
Human |
Mouse |
Entrez |
6507 |
20512 |
Ensembl |
ENSG00000079215 |
ENSMUSG00000005360 |
UniProt |
P43003 |
P56564 |
RefSeq (mRNA) |
NM_001166695 |
NM_148938 |
RefSeq (protein) |
NP_001160167 |
NP_683740 |
Location (UCSC) |
Chr 5:
36.61 – 36.69 Mb |
Chr 15:
8.63 – 8.71 Mb |
PubMed search |
[1] |
[2] |
|
Solute carrier family 1 (glial high-affinity glutamate transporter), member 3, also known as SLC1A3,is a protein that, in humans, is encoded by the SLC1A3 gene.[1] SLC1A3 is also often called the GLutamate ASpartate Transporter (GLAST) or Excitatory Amino Acid Transporter 1 (EAAT1) .
GLAST is predominantly expressed in the plasma membrane, allowing it to remove glutamate from the extracellular space.[2] It has also been localized in the inner mitochondrial membrane as part of the malate-aspartate shuttle.[3]
Contents
- 1 Mechanism
- 2 Tissue distribution
- 3 Clinical significance
- 4 Pharmacology
- 5 References
- 6 Further reading
- 7 External links
Mechanism
GLAST functions in vivo as a homotrimer.[4] GLAST mediates the transport of glutamic and aspartic acid with the cotransport of three Na+ and one H+ cations and counter transport of one K+ cation. This co-transport coupling (or symport) allows the transport of glutamate into cells against a concentration gradient.[5]
|
"Diagram Illustrating the Malate-Asparate Shuttle Pathway". (Glutamate aspartate transporter labeled at bottom center.)
|
|
Expression of SLC1A3 in the Bergmann glia fibers. Mouse brain at 7th postnatal day, sagittal section; GENSAT database.
|
|
Tissue distribution
GLAST is expressed throughout the CNS,[6] and is highly expressed in astrocytes and Bergmann glia in the cerebellum.[7][8] In the retina, GLAST is expressed in Muller cells.[9] GLAST is also expressed in a number of other tissues including cardiac myocytes.[3]
Clinical significance
It is associated with type 6 episodic_ataxia.[10]
Pharmacology
DL-threo-beta-benzyloxyaspartate (TBOA) is an inhibitor of the excitatory amino acid transporters.[11]
Selective inhibitors for GLAST have recently been discovered based on 25 combinations of substitutions at the 4 and 7 positions of 2-amino-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitril.[12]
References
- ^ "Entrez Gene: SLC1A3 solute carrier family 1 (glial high affinity glutamate transporter), member 3".
- ^ Lehre KP, Levy LM, Ottersen OP, Storm-Mathisen J, Danbolt NC (March 1995). "Differential expression of two glial glutamate transporters in the rat brain: quantitative and immunocytochemical observations.". The Journal of neuroscience : the official journal of the Society for Neuroscience 15 (3 Pt 1): 1835–53. PMID 7891138.
- ^ a b Ralphe JC, Segar JL, Schutte BC, Scholz TD (2004). "Localization and function of the brain excitatory amino acid transporter type 1 in cardiac mitochondria". J. Mol. Cell. Cardiol. 37 (1): 33–41. doi:10.1016/j.yjmcc.2004.04.008. PMID 15242733.
- ^ Gendreau S, Voswinkel S, Torres-Salazar D, Lang N, Heidtmann H, Detro-Dassen S, Schmalzing G, Hidalgo P, Fahlke C (Sep 17, 2004). "A trimeric quaternary structure is conserved in bacterial and human glutamate transporters.". The Journal of Biological Chemistry 279 (38): 39505–12. doi:10.1074/jbc.M408038200. PMID 15265858.
- ^ Kanai Y, Hediger MA (2004). "The glutamate/neutral amino acid transporter family SLC1: molecular, physiological and pharmacological aspects". Pflugers Arch. 447 (5): 469–79. doi:10.1007/s00424-003-1146-4. PMID 14530974.
- ^ Danbolt NC (September 2001). "Glutamate uptake". Prog. Neurobiol. 65 (1): 1–105. doi:10.1016/S0301-0082(00)00067-8. PMID 11369436.
- ^ Storck T, Schulte S, Hofmann K, Stoffel W (1992). "Structure, expression, and functional analysis of a Na(+)-dependent glutamate/aspartate transporter from rat brain". Proc. Natl. Acad. Sci. U.S.A. 89 (22): 10955–9. doi:10.1073/pnas.89.22.10955. PMC 50461. PMID 1279699.
- ^ Rothstein JD, Martin L, Levey AI, Dykes-Hoberg M, Jin L, Wu D, Nash N, Kuncl RW (1994). "Localization of neuronal and glial glutamate transporters". Neuron 13 (3): 713–25. doi:10.1016/0896-6273(94)90038-8. PMID 7917301.
- ^ Rauen T, Taylor WR, Kuhlbrodt K, Wiessner M (1998). "High-affinity glutamate transporters in the rat retina: a major role of the glial glutamate transporter GLAST-1 in transmitter clearance". Cell Tissue Res. 291 (1): 19–31. doi:10.1007/s004410050976. PMID 9394040.
- ^ Jen JC, Wan J, Palos TP, Howard BD, Baloh RW (2005). "Mutation in the glutamate transporter EAAT1 causes episodic ataxia, hemiplegia, and seizures". Neurology 65 (4): 529–34. doi:10.1212/01.WNL.0000172638.58172.5a. PMID 16116111.
- ^ Shimamoto K, Lebrun B, Yasuda-Kamatani Y, Sakaitani M, Shigeri Y, Yumoto N, Nakajima T (February 1998). "DL-threo-beta-benzyloxyaspartate, a potent blocker of excitatory amino acid transporters.". Molecular Pharmacology 53 (2): 195–201. PMID 9463476.
- ^ Jensen AA, Erichsen MN, Nielsen CW, Stensbøl TB, Kehler J, Bunch L (Feb 26, 2009). "Discovery of the first selective inhibitor of excitatory amino acid transporter subtype 1.". Journal of Medical Chemistry 52 (4): 912–5. doi:10.1021/jm8013458. PMID 19161278.
Further reading
- Arriza JL, Fairman WA, Wadiche JI, et al. (1994). "Functional comparisons of three glutamate transporter subtypes cloned from human motor cortex.". J. Neurosci. 14 (9): 5559–69. PMID 7521911.
- Nomura N, Nagase T, Miyajima N, et al. (1995). "Prediction of the coding sequences of unidentified human genes. II. The coding sequences of 40 new genes (KIAA0041-KIAA0080) deduced by analysis of cDNA clones from human cell line KG-1.". DNA Res. 1 (5): 223–9. doi:10.1093/dnares/1.5.223. PMID 7584044.
- Takai S, Yamada K, Kawakami H, et al. (1995). "Localization of the gene (SLC1A3) encoding human glutamate transporter (GluT-1) to 5p13 by fluorescence in situ hybridization.". Cytogenet. Cell Genet. 69 (3-4): 209–10. doi:10.1159/000133965. PMID 7698014.
- Shashidharan P, Huntley GW, Meyer T, et al. (1995). "Neuron-specific human glutamate transporter: molecular cloning, characterization and expression in human brain.". Brain Res. 662 (1-2): 245–50. doi:10.1016/0006-8993(94)90819-2. PMID 7859077.
- Kirschner MA, Arriza JL, Copeland NG, et al. (1995). "The mouse and human excitatory amino acid transporter gene (EAAT1) maps to mouse chromosome 15 and a region of syntenic homology on human chromosome 5.". Genomics 22 (3): 631–3. doi:10.1006/geno.1994.1437. PMID 8001975.
- Kawakami H, Tanaka K, Nakayama T, et al. (1994). "Cloning and expression of a human glutamate transporter.". Biochem. Biophys. Res. Commun. 199 (1): 171–6. doi:10.1006/bbrc.1994.1210. PMID 8123008.
- Shashidharan P, Plaitakis A (1993). "Cloning and characterization of a glutamate transporter cDNA from human cerebellum.". Biochim. Biophys. Acta 1216 (1): 161–4. doi:10.1016/0167-4781(93)90057-K. PMID 8218410.
- Andersson B, Wentland MA, Ricafrente JY, et al. (1996). "A "double adaptor" method for improved shotgun library construction.". Anal. Biochem. 236 (1): 107–13. doi:10.1006/abio.1996.0138. PMID 8619474.
- Stoffel W, Sasse J, Düker M, et al. (1996). "Human high affinity, Na(+)-dependent L-glutamate/L-aspartate transporter GLAST-1 (EAAT-1): gene structure and localization to chromosome 5p11-p12.". FEBS Lett. 386 (2-3): 189–93. doi:10.1016/0014-5793(96)00424-3. PMID 8647279.
- Yu W, Andersson B, Worley KC, et al. (1997). "Large-scale concatenation cDNA sequencing.". Genome Res. 7 (4): 353–8. doi:10.1101/gr.7.4.353. PMC 139146. PMID 9110174.
- Dunlop J, Lou Z, McIlvain HB (1999). "Properties of excitatory amino acid transport in the human U373 astrocytoma cell line.". Brain Res. 839 (2): 235–42. doi:10.1016/S0006-8993(99)01714-X. PMID 10519046.
- Koch HP, Kavanaugh MP, Esslinger CS, et al. (1999). "Differentiation of substrate and nonsubstrate inhibitors of the high-affinity, sodium-dependent glutamate transporters.". Mol. Pharmacol. 56 (6): 1095–104. PMID 10570036.
- Ye ZC, Rothstein JD, Sontheimer H (2000). "Compromised glutamate transport in human glioma cells: reduction-mislocalization of sodium-dependent glutamate transporters and enhanced activity of cystine-glutamate exchange.". J. Neurosci. 19 (24): 10767–77. PMID 10594060.
- Szymocha R, Akaoka H, Dutuit M, et al. (2000). "Human T-cell lymphotropic virus type 1-infected T lymphocytes impair catabolism and uptake of glutamate by astrocytes via Tax-1 and tumor necrosis factor alpha.". J. Virol. 74 (14): 6433–41. doi:10.1128/JVI.74.14.6433-6441.2000. PMC 112151. PMID 10864655.
- Mordrelle A, Jullian E, Costa C, et al. (2000). "EAAT1 is involved in transport of L-glutamate during differentiation of the Caco-2 cell line.". Am. J. Physiol. Gastrointest. Liver Physiol. 279 (2): G366–73. PMID 10915646.
- Seal RP, Shigeri Y, Eliasof S, et al. (2002). "Sulfhydryl modification of V449C in the glutamate transporter EAAT1 abolishes substrate transport but not the substrate-gated anion conductance.". Proc. Natl. Acad. Sci. U.S.A. 98 (26): 15324–9. doi:10.1073/pnas.011400198. PMC 65028. PMID 11752470.
- Palmada M, Kinne-Saffran E, Centelles JJ, Kinne RK (2002). "Benzodiazepines differently modulate EAAT1/GLAST and EAAT2/GLT1 glutamate transporters expressed in CHO cells.". Neurochem. Int. 40 (4): 321–6. doi:10.1016/S0197-0186(01)00087-0. PMID 11792462.
- Scott HL, Pow DV, Tannenberg AE, Dodd PR (2002). "Aberrant expression of the glutamate transporter excitatory amino acid transporter 1 (EAAT1) in Alzheimer's disease.". J. Neurosci. 22 (3): RC206. PMID 11826152.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi:10.1073/pnas.242603899. PMC 139241. PMID 12477932.
- Vallat-Decouvelaere AV, Chrétien F, Gras G, et al. (2003). "Expression of excitatory amino acid transporter-1 in brain macrophages and microglia of HIV-infected patients. A neuroprotective role for activated microglia?". J. Neuropathol. Exp. Neurol. 62 (5): 475–85. PMID 12769187.
External links
- Glutamate Aspartate Transporter 1 at the US National Library of Medicine Medical Subject Headings (MeSH)
Membrane proteins, carrier proteins: membrane transport proteins solute carrier (TC 2A)
|
|
|
|
Ion pumps
|
|
Symporter, Cotransporter |
- Na+/K+,l-
- Na/Pi3
- Na+/Cl-
- Na/glucose
- Na+/I-
- Cl-/K+
|
|
Antiporter (exchanger) |
- Na+/H+
- Na+/Ca2+
- Na+/(Ca2+-K+) - Cl-/HCO3- (Band 3)
- Cl-formate exchanger
- Cl-oxalate exchanger
|
|
|
|
see also solute carrier disorders
Index of cells
|
|
Description |
- Structure
- Organelles
- peroxisome
- cytoskeleton
- centrosome
- epithelia
- cilia
- mitochondria
- Membranes
- Membrane transport
- ion channels
- vesicular transport
- solute carrier
- ABC transporters
- ATPase
- oxidoreduction-driven
|
|
Disease |
- Structural
- peroxisome
- cytoskeleton
- cilia
- mitochondria
- nucleus
- scleroprotein
- Membrane
- channelopathy
- solute carrier
- ATPase
- ABC transporters
- other
- extracellular ligands
- cell surface receptors
- intracellular signalling
- Vesicular transport
- Pore-forming toxins
|
|
|
Mitochondrial proteins
|
|
Outer membrane |
fatty acid degradation |
- Carnitine palmitoyltransferase I
- Long-chain-fatty-acid—CoA ligase
|
|
tryptophan metabolism |
|
|
monoamine neurotransmitter
metabolism |
|
|
|
Intermembrane space |
- Adenylate kinase
- Creatine kinase
|
|
Inner membrane |
oxidative phosphorylation |
- Coenzyme Q – cytochrome c reductase
- Cytochrome c
- NADH dehydrogenase
- Succinate dehydrogenase
|
|
pyrimidine metabolism |
- Dihydroorotate dehydrogenase
|
|
mitochondrial shuttle |
- Malate-aspartate shuttle
- Glycerol phosphate shuttle
|
|
other |
- Glutamate aspartate transporter
- Glycerol-3-phosphate dehydrogenase
- ATP synthase
- Carnitine palmitoyltransferase II
- Uncoupling protein
|
|
|
Matrix |
citric acid cycle |
- Citrate synthase
- Aconitase
- Isocitrate dehydrogenase
- Oxoglutarate dehydrogenase complex
- Succinyl coenzyme A synthetase
- Fumarase
- Malate dehydrogenase
|
|
anaplerotic reactions |
- Aspartate transaminase
- Glutamate dehydrogenase
- Pyruvate dehydrogenase complex
|
|
urea cycle |
- Carbamoyl phosphate synthetase I
- Ornithine transcarbamylase
- N-Acetylglutamate synthase
|
|
alcohol metabolism |
|
|
|
|
|
Other/to be sorted |
steroidogenesis |
- Cholesterol side-chain cleavage enzyme
- Steroid 11-beta-hydroxylase
- Aldosterone synthase
- Frataxin
|
|
- Mitochondrial membrane transport protein
- Mitochondrial permeability transition pore
- Mitochondrial carrier
|
|
|
Mitochondrial DNA |
Complex I |
- MT-ND1
- MT-ND2
- MT-ND3
- MT-ND4
- MT-ND4L
- MT-ND5
- MT-ND6
|
|
Complex III |
|
|
Complex IV |
|
|
ATP synthase |
|
|
tRNA |
- MT-TA
- MT-TC
- MT-TD
- MT-TE
- MT-TF
- MT-TG
- MT-TH
- MT-TI
- MT-TK
- MT-TL1
- MT-TL2
- MT-TM
- MT-TN
- MT-TP
- MT-TQ
- MT-TR
- MT-TS1
- MT-TS2
- MT-TT
- MT-TV
- MT-TW
- MT-TY
|
|
|
see also mitochondrial diseases
Index of cells
|
|
Description |
- Structure
- Organelles
- peroxisome
- cytoskeleton
- centrosome
- epithelia
- cilia
- mitochondria
- Membranes
- Membrane transport
- ion channels
- vesicular transport
- solute carrier
- ABC transporters
- ATPase
- oxidoreduction-driven
|
|
Disease |
- Structural
- peroxisome
- cytoskeleton
- cilia
- mitochondria
- nucleus
- scleroprotein
- Membrane
- channelopathy
- solute carrier
- ATPase
- ABC transporters
- other
- extracellular ligands
- cell surface receptors
- intracellular signalling
- Vesicular transport
- Pore-forming toxins
|
|
|
UpToDate Contents
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
English Journal
- Behavioral and molecular alterations in mice resulting from chronic treatment with dexamethasone: Relevance to depression.
- Skupio U1, Tertil M1, Sikora M1, Golda S1, Wawrzczak-Bargiela A1, Przewlocki R2.
- Neuroscience.Neuroscience.2015 Feb 12;286:141-50. doi: 10.1016/j.neuroscience.2014.11.035. Epub 2014 Nov 27.
- Chronic stress, the administration of glucocorticoids and the prolonged activation of glucocorticoid receptors (GRs) are reported to induce affective changes in humans and rodents that resemble a depressive state. However, data concerning the behavioral and molecular effects of the selective activat
- PMID 25433240
- Synergistic association of PI4KA and GRM3 genetic polymorphisms with poor antipsychotic response in south Indian schizophrenia patients with low severity of illness.
- Kaur H1, Jajodia A, Grover S, Baghel R, Jain S, Kukreti R.
- American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics.Am J Med Genet B Neuropsychiatr Genet.2014 Dec;165B(8):635-46. doi: 10.1002/ajmg.b.32268. Epub 2014 Sep 11.
- Literature indicates key role of glutamatergic pathway genes in antipsychotic response among schizophrenia patients. However, molecular basis of their underlying role in antipsychotic response remained unexplained. Thus, to unravel their molecular underpinnings, we sought to investigate interactions
- PMID 25209194
- Hypoxia-inducible factors enhance glutamate signaling in cancer cells.
- Hu H1, Takano N2, Xiang L2, Gilkes DM2, Luo W2, Semenza GL2.
- Oncotarget.Oncotarget.2014 Oct 15;5(19):8853-68.
- Signaling through glutamate receptors has been reported in human cancers, but the molecular mechanisms are not fully delineated. We report that in hepatocellular carcinoma and clear cell renal carcinoma cells, increased activity of hypoxia-inducible factors (HIFs) due to hypoxia or VHL loss-of-funct
- PMID 25326682
Japanese Journal
- Localization of the gene (SLC1A3) for the human glutamate transporter (GluT-1) to 5p13 by fluorescence in situ hybridization
Related Links
- episodic ataxia - caused by mutations in the SLC1A3 gene At least one mutation in the SLC1A3 gene has been found to cause episodic ataxia type 6 (EA6). This mutation changes a single protein building block (amino ...
- Complete information for SLC1A3 gene (protein-coding), solute carrier family 1 (glial high affinity glutamate transporter), member 3, including: function, proteins, disorders, pathways, orthologs, and expression. GeneCards - The Human ...
Related Pictures