出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2018/02/27 05:10:27」(JST)
過酸化水素 | |
---|---|
IUPAC名
Hydrogen Peroxide |
|
別称
Hydroperoxide
Hydrogen dioxide |
|
識別情報 | |
CAS登録番号 | 7722-84-1 |
KEGG | D00008 |
特性 | |
化学式 | H2O2 |
モル質量 | 34.0 |
外観 | 無色液体 |
密度 | 1.4, 液体(90%) |
融点 |
-11 (90%) |
沸点 |
141 (90%) |
出典 | |
ICSC 0164 | |
特記なき場合、データは常温 (25 °C)・常圧 (100 kPa) におけるものである。 |
過酸化水素(かさんかすいそ、Hydrogen peroxide)は、化学式 H2O2 で表される化合物。しばしば過水(かすい)と略称される。主に水溶液で扱われる。対象により強力な酸化剤にも還元剤にもなり、殺菌剤、漂白剤として利用される。発見者はフランスのルイ・テナール。
35%水溶液は、常温では無色の、水よりわずかに粘度の高い弱酸性の液体[1]。エタノール、エーテル、水に可溶。僅かにオゾンに似た臭いがする[2]。
過酸化水素は不安定で酸素を放出しやすく、非常に強力な酸化力を持つヒドロキシラジカルを生成しやすい。過酸化水素は活性酸素の一種ではあるが、フリーラジカルではない。
強い腐食性を持ち、高濃度のものが皮膚に付着すると痛みをともなう白斑が生じる。また、可燃物と混合すると過酸化物を生成、発火させることがある。水に溶けると、分解されるまでは水生生物に対して若干の毒性を持つ。[1]
実験室では、酸素を得る際に使われる。この反応式は以下の通りである。
反応速度を大きくするため触媒として二酸化マンガンや酵素の一種カタラーゼを使用する。傷口の消毒時に生じる泡は体内にあるカタラーゼが触媒として働いて生じる酸素である。
なお、過酸化水素は消防法第2条第7項および別表第一第6類2号により危険物第6類(酸化性液体)に指定されている。また、重量%で6%を超える濃度の水溶液などの製剤は毒物及び劇物取締法により劇物に指定されている。
過酸化水素全体の使用量では、製紙の際のパルプ漂白や廃水処理、半導体の洗浄など、工業的な利用が大部分を占める。塩素系の漂白剤などが多量の廃棄物を生じるのに対し、過酸化水素は最終的には無害な水と酸素に分解するため、工業利用するには環境にやさしい物質であると言われ、近年工業的な過酸化水素の利用は拡大してきている。
試薬用としては、濃度30w/v%の過酸化水素水が市販されている。主に酸化剤として用いられる。過酸化水素を酸化剤に用いた環境負荷の低い新規酸化反応法などが精力的に研究されている[3]。同様の観点から合成への利用も数多く検討されているが、コストの高さのため実用化されたプロセスはシクロヘキサノンオキシム合成[4]など限られており、利用用途におけるシェアはまだ低い。
閉鎖系エンジン(非大気依存推進)の酸素源としても利用が検討された。1930年頃からドイツのヘルムート・ヴァルターによって、高濃度過酸化水素の分解により酸素を発生させ内燃機関を作動させるアイディアが研究されヴァルター機関が開発された。各国で開発が進められ、第二次世界大戦中にはドイツでUボートXVIIB型が建造され、大戦後、戦勝国がその成果を持ち帰り、イギリスではエクスプローラー級潜水艦、ソビエト連邦ではS-99が建造され、試験されたが、いずれも成果は芳しくなく、事故を起こした事や、アメリカ海軍において、艦船に搭載可能な原子力機関の開発と成功が先んじたこともあって、ヴァルター機関はそれ以上省みられることなく、潜水艦の水中動力源としては実用化には至らなかった。日本でも第二次世界大戦中にドイツから技術提供を受けてヴァルター機関が研究されたが、実用化される前に終戦を迎えた。また魚雷の動力源としても使用されており、海上自衛隊の72式魚雷やイギリスの21インチ マーク12魚雷やソビエトの65型魚雷で使用された。マーク12魚雷はHMS Sidon、65型魚雷はクルスクでそれぞれ推進剤の高濃度過酸化水素に起因すると見られる事故を起こして搭載艦が沈没している。
その他にもロケット飛行機であるメッサーシュミット Me163のエンジンであるHWK 109-509や秋水の特呂二号原動機、Hs 293誘導弾、ロケットベルトの推進剤として使用され、磁気浮上式鉄道のKOMET(Komponentenmeßtrager)で1975年に401.3km/hの速度記録を樹立するときにも使用された。他にV2ロケットでターボポンプの駆動ガスの発生にも使用され、イギリスのアームストロング・シドレー・ステンター、アームストロング・シドレー・ベータ、ブリストル・シドレー・ガンマ、ブリストル・シドレー・605、デ・ハビランド スペクター等のロケットエンジンでも酸化剤として使用された。
軍用機以外では、水上速度記録更新を狙ったロケット推進型パワーボート「ディスカバリーII」[5]、2014年11月9日に時速333kmを記録したフランソワ・ギッシー(Francois Gissy)操縦のロケット推進自転車「Kamikaze V」[6]の推進剤としても用いられている。
衣料用漂白剤として過酸化水素は利用される。液体の衣料用漂白剤は希薄過酸化水素の溶液である。一方、過酸化水素と炭酸ナトリウムの錯体である過炭酸ナトリウムは、粉末で安定のため粉末の酸素系漂白剤として利用される。過炭酸ナトリウムは水に溶解すると炭酸ナトリウム (洗剤としても知られている)と過酸化水素とに解離する。また、髪の脱色に使用されることもあり、過酸化水素によって脱色した「偽の」ブロンドは、英語で peroxide blonde または bottle blonde と呼ばれる。
食品分野ではうどん、かまぼこ等の漂白目的の食品添加物として認可されているが、日本では1948(昭和23)年に食品添加物として初めて指定され、1969(昭和44)年に「うどん、かまぼこ、ちくわにあっては0.1g/kg以上、その他の食品にあっては0.03g/kg以上残存してはならない」とする使用基準が設けられた。その後、弱い動物発がん性が認められたとの報告があったことを踏まえて当該物質が分解しやすいという特性から、1980(昭和55)年2月に使用基準が「最終食品の完成前に過酸化水素を分解し、または除去しなければならない。」と改められた。2016(平成28)年2月に使用基準が「釜揚げしらす及びしらす干しにあってはその1kgにつき0.005g以上残存しないように使用しなければならない。その他の食品にあっては、最終食品の完成前に過酸化水素を分解し、又は除去しなければならない。」と改められた([平成28年10月27日付生食発1027第1号]過酸化水素の規格基準改正について )。
現在[いつ?]でもカズノコの殺菌・漂白に使用されていながら表示がないのは、カタラーゼで分解処理を施し残存させないため加工助剤となり食品添加物には該当しないためである。[7][8]
落花生、ほたて貝、しらす干しなど製造工程に関係なく、細胞内酸化反応および脂質の酸化等により天然由来の過酸化水素が数µg/g検出される食品が存在するため、殺菌・漂白の工程を示すものとは限らない。[9]
2.5〜3.5 w/v%の過酸化水素は医療用の外用消毒剤として利用され、オキシドール (oxydol) という日本薬局方名、またはオキシフル (oxyfull) という商品名でも呼ばれる。
飲料生産の充填工程で、飲料を充填する前に低濃度の過酸化水素水を紙パック内に噴霧して内部を殺菌する飲料充填機も存在する。この際、パック内に噴霧された過酸化水素水はパック内に送風を行うことで分解・乾燥し無害化する。ただし、噴霧量が多すぎるなどして飲料に過酸化水素水が混入するというトラブルも起こるリスクがある。
多くの生物種は過酸化水素分解酵素のカタラーゼを持つため、生体内での過酸化水素の寿命は極めて短い。つまり、(傷の内面を含む)体内に過酸化水素が侵入すると速やかに酸素に分解される (オキシフルを塗布した傷口で酸素の細かい白い泡の発生が観察される)。これを微生物分析への応用した用途がある。一般的に通性嫌気性細菌はカタラーゼを持つが、偏性嫌気性細菌は持たないため、細菌の種類を判別できる。また、カタラーゼは熱により変性することから、食品に混入した生物系の異物 (毛髪や昆虫など)が加熱殺菌工程の前後どちらで混入したかを判別する苦情対応にも用いられる (殺菌前に混入した物であると泡が生じない)[10]。
過酸化水素 (100%相当)の2016年度日本国内生産量は 175,673 t、工業消費量は 15,747 t である[11]。今日では、一般的にアントラセン誘導体の自動酸化を利用して生産が行われている[12]。2-エチルアントラヒドロキノンもしくは2-アミルアントラヒドロキノンを溶媒に溶解し、空気中の酸素と混合するとアントラヒドロキノンが酸化されてアントラキノンと過酸化水素が生じる。ここからイオン交換水を用いて抽出し、アントラキノンと過酸化水素を分離する。分離後、わずかに混入している有機溶媒を除去し、さらに減圧蒸留することにより高濃度(30〜60%)のものを得る。副生成物であるアントラキノンをニッケルまたはパラジウム触媒を用いて水素還元することでアントラヒドロキノンへと戻し再利用する。アントラヒドロキノンの酸化の際に側鎖が酸化されたり、還元の際に芳香環が還元されてしまうことがあり、適当な再生処理が必要である。本法ではアントラキノンをいかに効率よく循環・再生使用できるかが重要となる。
硫酸または硫酸水素アンモニウムの水溶液を電気分解して生じるペルオキソ二硫酸(H2(SO4)2)2−を加水分解することによる生産法も行われていたが、電力消費などの理由から現在ではあまり行われていない。
2005年現在、工業的な利用量が増え続けており、アントラキノン法に代わる安価な製造法、精製法の研究開発が各所で進められている。実験室レベルの研究については、合成研究の項で述べる。
工業的にはアントラキノン法がよく用いられる。しかし、アントラキノン法は、多段プロセスであること、有機溶媒を必要とすること、副反応を起こしたアントラキノンの再生が必要であること、など多数の問題があり、過酸化水素が高価になる原因となっている。そのため、新しい過酸化水素合成法の開発が切望されている。
他の合成法にPd触媒を用いた合成法と燃料電池反応法がある。
Pd(-Au)/CまたはPd(-Au)/SiO2触媒を用いてハロゲン化物イオン存在下、酸性条件で酸素と水素を直接反応させる。古くは、徳山曹達(現・トクヤマ)がPd/SiO2触媒を用いて、高圧の酸素と水素を反応させると過酸化水素が高濃度で蓄積できることを特許取得している[13]。またデュポンも同様にPd触媒を用いた合成法を特許取得している[14]。最近では、石原らはPd-Auコロイド触媒を適切に調製することにより、ほぼ100%の選択性で過酸化水素が生成することを報告している[15]。酸素0.5気圧、水素0.5気圧の混合ガスを用いて、2時間反応させたところ0.4%の過酸化水素水が生成したとしている。本触媒系一般の問題点として、酸素と水素を直接混合するため爆発の危険性があること、過酸化水素を高濃度で蓄積するためには加圧が必要であること (1気圧では最高で1%〜2%)、生成する過酸化水素水には酸や塩が含まれることが挙げられる。
特に爆発の危険性の問題は重大であり、この危険性を回避するため、反応速度を犠牲にして水素と酸素の混合比を爆発範囲から外す方法のほかに、酸素と水素をパラジウム薄膜で隔てた合成法がChoudharyらにより提案されているが、パラジウムが水素透過能を示すのは通常遥かに高温であり、単に膜に穴が開いていることが疑われることに加え、過酸化水素生成速度が極めて遅いなどの難点がある[16]。
酸素-水素燃料電池では通常は発電を目的とし、酸素を水にまで還元させるが、適切な触媒を選択することにより酸素を過酸化水素に選択的に還元する方法が提案されている[17]。燃料電池反応法では酸素と水素は電解質に隔てられているため爆発の危険性が無いことが利点して挙げられる。まず酸水溶液中での過酸化水素の合成[18]および塩基性での過酸化水素合成[19][20]が報告された。特に塩基性では高効率で過酸化水素が生成したと報告されているが、これらの反応系ではパラジウム系と同様に生成する過酸化水素水に電解質が含まれるという難点を持つ。しかし、最近ナフィオン膜を用いた電解質を含まない過酸化水素水の直接合成法が提案された[21]。1気圧の条件であるにもかかわらず、コバルト触媒の回転数 (ターンオーバー数)は8時間で400000に達し、生成する過酸化水素濃度は14%と非常に高い。本反応系の問題点として、効率が約40%(残りは水)と十分ではないことが挙げられる。
光触媒を使用した光電気化学法による過酸化水素の合成法が研究されている[22][23]。
1980年3月18日にソビエト連邦のプレセツク宇宙基地で、ターボポンプ駆動用の過酸化水素を充填中のボストーク-2Mロケットが爆発事故を起こし、48人が死亡した。原因はステンレスのフィルターのはんだ付けに純粋な錫を使用せずに鉛の含有する電子部品用のはんだを使用した事だった。鉛自体には過酸化水素を分解する触媒としての働きは無いものの、鉛の酸化物は強力な触媒として作用する[24]。
1999年10月29日、首都高速2号目黒線を走行中のタンクローリーが爆発。積み荷の過酸化水素水溶液が飛散した。飛散した過酸化水素水溶液により、一般道路の歩行者が目の痛みと皮膚のただれを訴えるなどした[25]。このタンクローリーは普段は塩化銅を含む廃液の運搬に使用されており、残留していた金属成分により過酸化水素の分解が進み爆発した[26]。このように過酸化水素は遷移金属により容易に分解されるので、注意が必要である。
2000年8月12日にバレンツ海で原子力潜水艦クルスクに搭載されていた魚雷の推進剤である過酸化水素が不完全な溶接箇所から漏れて爆発してこれが原因で魚雷の弾頭が誘爆してクルスクは沈没した[27][28][29]。
生体ではエネルギー代謝の際、細胞内に過酸化水素が発生する。過酸化水素は、活性酸素の一種であり、脂肪酸、生体膜、DNA等を酸化損傷する能力を有し、生体に有害であり、生体防御のためその迅速な消去が必要である。
カタラーゼ(catalase)は、代謝の過程で発生する過酸化水素を不均化して酸素と水に変える反応を触媒する酵素である。毎秒当たりの代謝回転数は全酵素のなかでも最も高く、4000万に達する[30]。ヒトの場合、カタラーゼは4つのサブユニットで構成されており、各サブユニットは526のアミノ酸から成る[31]。分子量は約24万。ヘムとマンガンを補因子として用いる。
グルタチオン-アスコルビン酸回路は、過酸化水素を解毒化する代謝経路である。グルタチオン-アスコルビン酸回路には、アスコルビン酸、グルタチオン、NADPHおよび代謝に関連する酵素等の抗酸化物質が含まれている[32]。
この経路の最初のステップでは、過酸化水素は、アスコルビン酸を電子供与体として利用してアスコルビン酸ペルオキシダーゼ(APX)によって水に還元される。酸化されたアスコルビン酸(モノデヒドロアスコルビン酸(MDA))は、モノデヒドロアスコルビン酸レダクターゼ (NADH)(MDAR)によってアスコルビン酸(ASC)に再生される[33]。しかし、モノデヒドロアスコルビン酸は反応性が高く、迅速に還元されない場合にはアスコルビン酸とデヒドロアスコルビン酸(DHA)に不均化する。デヒドロアスコルビン酸は、還元型グルタチオン(GSH)を消費してデヒドロアスコルビン酸レダクターゼによってアスコルビン酸に還元され、酸化型グルタチオン(GSSG)(グルタチオンジスルフィド)を生成する。最後に、酸化型グルタチオンは、NADPHを電子供与体として利用してグルタチオンレダクターゼ(GR)によって還元される。こうしてアスコルビン酸とグルタチオンが消費されることはない。電子は実質的にNADPHからH2O2に流れることとなる。デヒドロアスコルビン酸の還元は、非酵素的または例えばグルタチオンS -トランスフェラーゼオメガ1やグルタレドキシンなどのようにデヒドロアスコルビン酸還元酵素(DHAR)活性を有したタンパク質によって触媒される[34][35]。
植物では、グルタチオン-アスコルビン酸回路は、細胞質、ミトコンドリア、色素体およびペルオキシソームで機能する[36][37]。グルタチオン、アスコルビン酸およびNADPHは、植物細胞に高濃度で存在しているので、グルタチオン-アスコルビン酸回路が過酸化水素の解毒に重要な役割を担っていることが想定される。それにもかかわらず、チオレドキシンまたはグルタレドキシンを還元基質として利用したペルオキシレドキシンやグルタチオンペルオキシダーゼを含む他の酵素(ペルオキシダーゼ)もまた、植物での過酸化水素の解毒に貢献している[38]。
ミトコンドリアの電子伝達系では、スーパーオキシドアニオン(O2-)などの活性酸素種が常に発生している。活性酸素は生体分子を破壊し有害であるため、防御機構が存在する。スーパーオキシドアニオンは、まずスーパーオキシドディスムターゼ(SOD) によって過酸化水素に変換され、ペルオキシダーゼによって無害な水に分解される[39][信頼性要検証]。
グルタチオンペルオキシダーゼはセレノシステインを含む酵素である。グルタチオンを電子供与体として用い、過酸化水素だけでなく有機過酸化物にも作用し、酸化ストレスから生体を守っている[40][41]。
白血球(好中球)は、体内に細菌が侵入してくると捕獲(貪食)し、白血球はNAD(P)Hオキシダーゼを使ってNADH(NADPH)とH+と酸素を反応させて、過酸化水素を生成し、貪食されてもまだ増殖しようとする細菌を殺菌し感染から守る生体防御メカニズムを有する[42][信頼性要検証]。
生体内で過酸化水素を捕捉する抗酸化物質の一覧[43]
ミイデラゴミムシは体内に過酸化水素とヒドロキノンを貯めておき、これらを反応させて敵に対し蒸気とベンゾキノンから成る100℃以上の気体を爆発的に噴射する。
|
|
|
|||
Names | |||
---|---|---|---|
IUPAC name
Hydrogen peroxide
|
|||
Other names
Dioxidane
Oxidanyl |
|||
Identifiers | |||
CAS Number
|
|
||
3D model (JSmol)
|
|
||
ChEBI |
|
||
ChEMBL |
|
||
ChemSpider |
|
||
ECHA InfoCard | 100.028.878 | ||
EC Number | 231-765-0 | ||
IUPHAR/BPS
|
|
||
KEGG |
|
||
PubChem CID
|
|
||
RTECS number | MX0900000 (>90% soln.) MX0887000 (>30% soln.) |
||
UNII |
|
||
UN number | 2015 (>60% soln.) 2014 (20–60% soln.) |
||
InChI
|
|||
SMILES
|
|||
Properties | |||
Chemical formula
|
H2O2 | ||
Molar mass | 34.0147 g/mol | ||
Appearance | Very light blue color; colorless in solution | ||
Odor | slightly sharp | ||
Density | 1.11 g/cm3 (20 °C, 30% (w/w) solution )[1] 1.450 g/cm3 (20 °C, pure) |
||
Melting point | −0.43 °C (31.23 °F; 272.72 K) | ||
Boiling point | 150.2 °C (302.4 °F; 423.3 K) (decomposes) | ||
Solubility in water
|
Miscible | ||
Solubility | soluble in ether, alcohol insoluble in petroleum ether |
||
Vapor pressure | 5 mmHg (30 °C)[2] | ||
Acidity (pKa) | 11.75 | ||
Magnetic susceptibility (χ)
|
−17.7·10−6 cm3/mol | ||
Refractive index (nD)
|
1.4061 | ||
Viscosity | 1.245 cP (20 °C) | ||
Dipole moment
|
2.26 D | ||
Thermochemistry | |||
Specific
heat capacity (C) |
1.267 J/(g·K) (gas) 2.619 J/(g·K) (liquid) |
||
Std enthalpy of
formation (ΔfH |
−187.80 kJ/mol | ||
Pharmacology | |||
ATC code
|
A01AB02 (WHO) D08AX01 (WHO), S02AA06 (WHO) | ||
Hazards | |||
Safety data sheet | ICSC 0164 (>60% soln.) | ||
GHS pictograms | |||
GHS signal word | danger | ||
GHS hazard statements
|
H271, H302, H314, H332, H335, H412 | ||
GHS precautionary statements
|
P280, P305+351+338, P310 | ||
NFPA 704 |
0
3
3
OX
|
||
Flash point | Non-flammable | ||
Lethal dose or concentration (LD, LC): | |||
LD50 (median dose)
|
1518 mg/kg[citation needed] 2000 mg/kg (oral, mouse)[3] |
||
LC50 (median concentration)
|
1418 ppm (rat, 4 hr)[3] | ||
LCLo (lowest published)
|
227 ppm (mouse)[3] | ||
US health exposure limits (NIOSH): | |||
PEL (Permissible)
|
TWA 1 ppm (1.4 mg/m3)[2] | ||
REL (Recommended)
|
TWA 1 ppm (1.4 mg/m3)[2] | ||
IDLH (Immediate danger)
|
75 ppm[2] | ||
Related compounds | |||
Related compounds
|
Water Ozone |
||
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
|||
Y verify (what is YN ?) | |||
Infobox references | |||
Hydrogen peroxide is a chemical compound with the formula H
2O
2. In its pure form, it is a pale blue, clear liquid, slightly more viscous than water. Hydrogen peroxide is the simplest peroxide (a compound with an oxygen–oxygen single bond). It is used as an oxidizer, bleaching agent and antiseptic. Concentrated hydrogen peroxide, or "high-test peroxide", is a reactive oxygen species and has been used as a propellant in rocketry.[4] Its chemistry is dominated by the nature of its unstable peroxide bond.
Hydrogen peroxide is unstable and slowly decomposes in the presence of base or a catalyst. Because of its instability, hydrogen peroxide is typically stored with a stabilizer in a weakly acidic solution. Hydrogen peroxide is found in biological systems including the human body. Enzymes that use or decompose hydrogen peroxide are classified as peroxidases.
The boiling point of H
2O
2 has been extrapolated as being 150.2 °C, approximately 50 °C higher than water. In practice, hydrogen peroxide will undergo potentially explosive thermal decomposition if heated to this temperature. It may be safely distilled at lower temperatures under reduced pressure.[5]
In aqueous solutions hydrogen peroxide differs from the pure material due to the effects of hydrogen bonding between water and hydrogen peroxide molecules. Hydrogen peroxide and water form a eutectic mixture, exhibiting freezing-point depression; pure water has a melting point of 0 °C and pure hydrogen peroxide of −0.43 °C. The boiling point of the same mixtures is also depressed in relation with the mean of both boiling points (125.1 °C). It occurs at 114 °C. This boiling point is 14 °C greater than that of pure water and 36.2 °C less than that of pure hydrogen peroxide.[6]
H2O2 (w/w) | Density (g/cm3) | Temperature (°C) |
---|---|---|
3% | 1.0095 | 15 |
27% | 1.10 | 20 |
35% | 1.13 | 20 |
50% | 1.20 | 20 |
70% | 1.29 | 20 |
75% | 1.33 | 20 |
96% | 1.42 | 20 |
98% | 1.43 | 20 |
100% | 1.45 | 20 |
Hydrogen peroxide (H
2O
2) is a nonplanar molecule with (twisted) C2 symmetry. Although the O−O bond is a single bond, the molecule has a relatively high rotational barrier of 2460 cm−1 (29.45 kJ/mol);[7] for comparison, the rotational barrier for ethane is 12.5 kJ/mol. The increased barrier is ascribed to repulsion between the lone pairs of the adjacent oxygen atoms and results in hydrogen peroxide displaying atropisomerism.
The molecular structures of gaseous and crystalline H
2O
2 are significantly different. This difference is attributed to the effects of hydrogen bonding, which is absent in the gaseous state.[8] Crystals of H
2O
2 are tetragonal with the space group D4
4P4121.[9]
Name | Formula | Molar mass (g/mol) | TM (°C) | TB (°C) |
---|---|---|---|---|
Hydrogen peroxide | HOOH | 34.01 | −0.43 | 150.2* |
Water | HOH | 18.02 | 0.00 | 99.98 |
Hydrogen disulfide | HSSH | 66.15 | −89.6 | 70.7 |
Hydrazine | H2NNH2 | 32.05 | 2 | 114 |
Hydroxylamine | NH2OH | 33.03 | 33 | 58* |
Diphosphane | H2PPH2 | 65.98 | −99 | 63.5* |
Hydrogen peroxide has several structural analogues with Hm−X−X−Hn bonding arrangements (water also shown for comparison). It has the highest (theoretical) boiling point of this series (X = O, N, S). Its melting point is also fairly high, being comparable to that of hydrazine and water, with only hydroxylamine crystallising significantly more readily, indicative of particularly strong hydrogen bonding. Diphosphane and hydrogen disulfide exhibit only weak hydrogen bonding and have little chemical similarity to hydrogen peroxide. All of these analogues are thermodynamically unstable. Structurally, the analogues all adopt similar skewed structures, due to repulsion between adjacent lone pairs.
Alexander von Humboldt synthesized one of the first synthetic peroxides, barium peroxide, in 1799 as a by-product of his attempts to decompose air.
Nineteen years later Louis Jacques Thénard recognized that this compound could be used for the preparation of a previously unknown compound, which he described as oxidized water – subsequently known as hydrogen peroxide.[10] [11] An improved version of this process used hydrochloric acid, followed by addition of sulfuric acid to precipitate the barium sulfate byproduct. Thénard's process was used from the end of the 19th century until the middle of the 20th century.[12]
Thénard and Joseph Louis Gay-Lussac synthesized sodium peroxide in 1811. The bleaching effect of peroxides and their salts on natural dyes became known around that time, but early attempts of industrial production of peroxides failed, and the first plant producing hydrogen peroxide was built in 1873 in Berlin. The discovery of the synthesis of hydrogen peroxide by electrolysis with sulfuric acid introduced the more efficient electrochemical method. It was first implemented into industry in 1908 in Weißenstein, Carinthia, Austria. The anthraquinone process, which is still used, was developed during the 1930s by the German chemical manufacturer IG Farben in Ludwigshafen. The increased demand and improvements in the synthesis methods resulted in the rise of the annual production of hydrogen peroxide from 35,000 tonnes in 1950, to over 100,000 tonnes in 1960, to 300,000 tonnes by 1970; by 1998 it reached 2.7 million tonnes.[13]
Pure hydrogen peroxide was long believed to be unstable, as early attempts to separate it from the water, which is present during synthesis, all failed. This instability was due to traces of impurities (transition-metal salts), which catalyze the decomposition of the hydrogen peroxide. Pure hydrogen peroxide was first obtained in 1894—almost 80 years after its discovery—by Richard Wolffenstein, who produced it by vacuum distillation.[14]
Determination of the molecular structure of hydrogen peroxide proved to be very difficult. In 1892 the Italian physical chemist Giacomo Carrara (1864–1925) determined its molecular mass by freezing-point depression, which confirmed that its molecular formula is H2O2.[15] At least half a dozen hypothetical molecular structures seemed to be consistent with the available evidence.[16] In 1934, the English mathematical physicist William Penney and the Scottish physicist Gordon Sutherland proposed a molecular structure for hydrogen peroxide that was very similar to the presently accepted one.[17]
Previously, hydrogen peroxide was prepared industrially by hydrolysis of the ammonium peroxydisulfate, which was itself obtained by the electrolysis of a solution of ammonium bisulfate (NH
4HSO
4) in sulfuric acid:
Today, hydrogen peroxide is manufactured almost exclusively by the anthraquinone process, which was formalized in 1936 and patented in 1939. It begins with the reduction of an anthraquinone (such as 2-ethylanthraquinone or the 2-amyl derivative) to the corresponding anthrahydroquinone, typically by hydrogenation on a palladium catalyst; the anthrahydroquinone then undergoes autoxidation to regenerate the starting anthraquinone, with hydrogen peroxide as a by-product. Most commercial processes achieve oxidation by bubbling compressed air through a solution of the derivatized anthracene, whereby the oxygen present in the air reacts with the labile hydrogen atoms (of the hydroxy groups), giving hydrogen peroxide and regenerating the anthraquinone. Hydrogen peroxide is then extracted, and the anthraquinone derivative is reduced back to the dihydroxy (anthracene) compound using hydrogen gas in the presence of a metal catalyst. The cycle then repeats itself.[18][19]
The simplified overall equation for the process is simple:[18]
The economics of the process depend heavily on effective recycling of the quinone (which is expensive) and extraction solvents, and of the hydrogenation catalyst.
A process to produce hydrogen peroxide directly from the elements has been of interest for many years. Direct synthesis is difficult to achieve, as the reaction of hydrogen with oxygen thermodynamically favours production of water. Systems for direct synthesis have been developed, most of which are based around finely dispersed metal catalysts.[20][21] None of these has yet reached a point where they can be used for industrial-scale synthesis.
Hydrogen peroxide is most commonly available as a solution in water. For consumers, it is usually available from pharmacies at 3 and 6 wt% concentrations. The concentrations are sometimes described in terms of the volume of oxygen gas generated; one milliliter of a 20-volume solution generates twenty milliliters of oxygen gas when completely decomposed. For laboratory use, 30 wt% solutions are most common. Commercial grades from 70% to 98% are also available, but due to the potential of solutions of more than 68% hydrogen peroxide to be converted entirely to steam and oxygen (with the temperature of the steam increasing as the concentration increases above 68%) these grades are potentially far more hazardous and require special care in dedicated storage areas. Buyers must typically allow inspection by commercial manufacturers.
In 1994, world production of H
2O
2 was around 1.9 million tonnes and grew to 2.2 million in 2006,[22] most of which was at a concentration of 70% or less. In that year bulk 30% H
2O
2 sold for around 0.54 USD/kg, equivalent to 1.50 USD/kg (0.68 USD/lb) on a "100% basis".[23]
Hydrogen peroxide occurs in surface water, groundwater and in the atmosphere. It forms upon illumination or natural catalytic action by substances contained in water. Sea water contains 0.5 to 14 μg/L of hydrogen peroxide, freshwater 1 to 30 μg/L and air 0.1 to 1 parts per billion.[13]
Hydrogen peroxide is thermodynamically unstable and decomposes to form water and oxygen with a ΔHo of −98.2 kJ/mol and a ΔS of 70.5 J/(mol·K):
The rate of decomposition increases with rising temperature, concentration and pH, with cool, dilute, acidic solutions showing the best stability. Decomposition is catalysed by various compounds, including most transition metals and their compounds (e.g. manganese dioxide, silver, and platinum).[24] Certain metal ions, such as Fe2+
or Ti3+
, can cause the decomposition to take a different path, with free radicals such as (HO·) and (HOO·) being formed. Non-metallic catalysts include potassium iodide, which reacts particularly rapidly and forms the basis of the elephant toothpaste experiment. Hydrogen peroxide can also be decomposed biologically by the enzyme catalase. The decomposition of hydrogen peroxide liberates oxygen and heat; this can be dangerous, as spilling high-concentration hydrogen peroxide on a flammable substance can cause an immediate fire.
Hydrogen peroxide exhibits oxidizing and reducing properties, depending on pH.
In acidic solutions, H
2O
2 is one of the most powerful oxidizers known—stronger than chlorine, chlorine dioxide, and potassium permanganate. Also, through catalysis, H
2O
2 can be converted into hydroxyl radicals (·OH), which are highly reactive.
Oxidant/reduced product | Oxidation potential, V |
---|---|
fluorine/hydrogen fluoride | 3.0 |
ozone/oxygen | 2.1 |
hydrogen peroxide/water | 1.8 |
potassium permanganate/manganese dioxide | 1.7 |
chlorine dioxide/HClO | 1.5 |
chlorine/chloride | 1.4 |
In acidic solutions Fe2+
is oxidized to Fe3+
(hydrogen peroxide acting as an oxidizing agent):
and sulfite (SO2−
3) is oxidized to sulfate (SO2−
4). However, potassium permanganate is reduced to Mn2+
by acidic H
2O
2. Under alkaline conditions, however, some of these reactions reverse; for example, Mn2+
is oxidized to Mn4+
(as MnO
2).
In basic solution, hydrogen peroxide can reduce a variety of inorganic ions. When it acts as a reducing agent, oxygen gas is also produced. For example, hydrogen peroxide will reduce sodium hypochlorite and potassium permanganate, which is a convenient method for preparing oxygen in the laboratory:
Hydrogen peroxide is frequently used as an oxidizing agent. Illustrative is oxidation of thioethers to sulfoxides:[25][26]
Alkaline hydrogen peroxide is used for epoxidation of electron-deficient alkenes such as acrylic acid derivatives, and for the oxidation of alkylboranes to alcohols, the second step of hydroboration-oxidation. It is also the principal reagent in the Dakin oxidation process.
Hydrogen peroxide is a weak acid, forming hydroperoxide or peroxide salts with many metals.
It also converts metal oxides into the corresponding peroxides. For example, upon treatment with hydrogen peroxide, chromic acid(CrO
3 + H
2SO
4) forms an unstable blue peroxide CrO(O
2)
2.
This kind of reaction is used industrially to produce peroxoanions. For example, reaction with borax leads to sodium perborate, a bleach used in laundry detergents:
H
2O
2 converts carboxylic acids (RCO2H) into peroxy acids (RC(O)O2H), which are themselves used as oxidizing agents. Hydrogen peroxide reacts with acetone to form acetone peroxide and with ozone to form trioxidane. Hydrogen peroxide forms stable adducts with urea (hydrogen peroxide - urea), sodium carbonate (sodium percarbonate) and other compounds.[27] An acid-base adduct with triphenylphosphine oxide is a useful "carrier" for H
2O
2 in some reactions.
The peroxide anion is a stronger nucleophile than hydroxide and displaces hydroxyl from oxyanions e.g. forming perborates and percarbonates. Sodium perborate and sodium percarbonate are important consumer and industrial bleaching agents; they stabilize hydrogen peroxide and limit side reactions (e.g. reduction and decomposition note below). The peroxide anion forms an adduct with urea, hydrogen peroxide–urea.
Hydrogen peroxide is both an oxidizing agent and reducing agent. The oxidation of hydrogen peroxide by sodium hypochlorite yields singlet oxygen. The net reaction of a ferric ion with hydrogen peroxide is a ferrous ion and oxygen. This proceeds via single electron oxidation and hydroxyl radicals. This is used in some organic chemistry oxidations, e.g. in the Fenton's reagent. Only catalytic quantities of iron ion is needed since peroxide also oxidizes ferrous to ferric ion. The net reaction of hydrogen peroxide and permanganate or manganese dioxide is manganous ion; however, until the peroxide is spent some manganous ions are reoxidized to make the reaction catalytic. This forms the basis for common monopropellant rockets.
Hydrogen peroxide is formed in human and animals as a short-lived product in biochemical processes and is toxic to cells. The toxicity is due to oxidation of proteins, membrane lipids and DNA by the peroxide ions.[28] The class of biological enzymes called SOD (superoxide dismutase) is developed in nearly all living cells as an important antioxidant agent. They promote the disproportionation of superoxide into oxygen and hydrogen peroxide, which is then rapidly decomposed by the enzyme catalase to oxygen and water.[29]
Peroxisomes are organelles found in virtually all eukaryotic cells.[30] They are involved in the catabolism of very long chain fatty acids, branched chain fatty acids, D-amino acids, polyamines, and biosynthesis of plasmalogens, etherphospholipids critical for the normal function of mammalian brains and lungs.[31] Upon oxidation, they produce hydrogen peroxide in the following process:[32]
Catalase, another peroxisomal enzyme, uses this H2O2 to oxidize other substrates, including phenols, formic acid, formaldehyde, and alcohol, by means of the peroxidation reaction:
This reaction is important in liver and kidney cells, where the peroxisomes neutralize various toxic substances that enter the blood. Some of the ethanol humans drink is oxidized to acetaldehyde in this way.[33] In addition, when excess H2O2 accumulates in the cell, catalase converts it to H2O through this reaction:
Another origin of hydrogen peroxide is the degradation of adenosine monophosphate which yields hypoxanthine. Hypoxanthine is then oxidatively catabolized first to xanthine and then to uric acid, and the reaction is catalyzed by the enzyme xanthine oxidase:[34]
Hypoxanthine
Xanthine oxidase
Xanthine
Xanthine oxidase
Uric acid
The degradation of guanosine monophosphate yields xanthine as an intermediate product which is then converted in the same way to uric acid with the formation of hydrogen peroxide.[34]
Eggs of sea urchin, shortly after fertilization by a sperm, produce hydrogen peroxide. It is then quickly dissociated to OH· radicals. The radicals serve as initiator of radical polymerization, which surrounds the eggs with a protective layer of polymer.[35]
The bombardier beetle has a device which allows it to shoot corrosive and foul-smelling bubbles at its enemies. The beetle produces and stores hydroquinone and hydrogen peroxide, in two separate reservoirs in the rear tip of its abdomen. When threatened, the beetle contracts muscles that force the two reactants through valved tubes into a mixing chamber containing water and a mixture of catalytic enzymes. When combined, the reactants undergo a violent exothermic chemical reaction, raising the temperature to near the boiling point of water. The boiling, foul-smelling liquid partially becomes a gas (flash evaporation) and is expelled through an outlet valve with a loud popping sound.[36][37][38]
Hydrogen peroxide is a signaling molecule of plant defense against pathogens.[39]
Hydrogen peroxide has roles as a signalling molecule in the regulation of a wide variety of biological processes.[40] The compound is a major factor implicated in the free-radical theory of aging, based on how readily hydrogen peroxide can decompose into a hydroxyl radical and how superoxide radical byproducts of cellular metabolism can react with ambient water to form hydrogen peroxide.[41] These hydroxyl radicals in turn readily react with and damage vital cellular components, especially those of the mitochondria.[42][43][44] At least one study has also tried to link hydrogen peroxide production to cancer.[45] These studies have frequently been quoted in fraudulent treatment claims.[citation needed]
The amount of hydrogen peroxide in biological systems can be assayed using a fluorimetric assay.[46]
About 60% of the world's production of hydrogen peroxide is used for pulp- and paper-bleaching.[22]
The second major industrial application is the manufacture of sodium percarbonate and sodium perborate, which are used as mild bleaches in laundry detergents. Sodium percarbonate, which is an adduct of sodium carbonate and hydrogen peroxide, is the active ingredient in such products as OxiClean and Tide laundry detergent. When dissolved in water, it releases hydrogen peroxide and sodium carbonate:[47]
It is used in the production of various organic peroxides with dibenzoyl peroxide being a high volume example. It is used in polymerisations, as a flour bleaching agent and as a treatment for acne. Peroxy acids, such as peracetic acid and meta-chloroperoxybenzoic acid are also produced using hydrogen peroxide. Hydrogen peroxide has been used for creating organic peroxide-based explosives, such as acetone peroxide.
Hydrogen peroxide is used in certain waste-water treatment processes to remove organic impurities. In advanced oxidation processing, the Fenton reaction[48][49] gives the highly reactive hydroxyl radical (·OH). This degrades organic compounds, including those that are ordinarily robust, such as aromatic or halogenated compounds.[50] It can also oxidize sulfur based compounds present in the waste; which is beneficial as it generally reduces their odour.[51]
Hydrogen peroxide can be used for the sterilization of various surfaces,[52] including surgical tools[53] and may be deployed as a vapour (VHP) for room sterilization.[54] H2O2 demonstrates broad-spectrum efficacy against viruses, bacteria, yeasts, and bacterial spores.[55] In general, greater activity is seen against Gram-positive than Gram-negative bacteria; however, the presence of catalase or other peroxidases in these organisms can increase tolerance in the presence of lower concentrations.[56] Higher concentrations of H2O2 (10 to 30%) and longer contact times are required for sporicidal activity.[57]
Hydrogen peroxide is seen as an environmentally safe alternative to chlorine-based bleaches, as it degrades to form oxygen and water and it is generally recognized as safe as an antimicrobial agent by the U.S. Food and Drug Administration (FDA).[58]
Historically hydrogen peroxide was used for disinfecting wounds, partly because of its low cost and prompt availability compared to other antiseptics. It is now thought to inhibit healing and to induce scarring because it destroys newly formed skin cells.[59] Only a very low concentration of H2O2 can induce healing, and only if not repeatedly applied.[60] Surgical use can lead to gas embolism formation.[61][62] Despite this it is still used for wound treatment in many developing countries.[63][64]
Dermal exposure to dilute solutions of hydrogen peroxide cause whitening or bleaching of the skin due to microembolism caused by oxygen bubbles in the capillaries.[65]
Diluted H
2O
2 (between 1.9% and 12%) mixed with ammonium hydroxide is used to bleach human hair. The chemical's bleaching property lends its name to the phrase "peroxide blonde".[66] Hydrogen peroxide is also used for tooth whitening. It can be found in most whitening toothpastes. Hydrogen peroxide has shown positive results involving teeth lightness and chroma shade parameters. It works by oxidizing colored pigments onto the enamel where the shade of the tooth can indeed become lighter. Hydrogen peroxide can be mixed with baking soda and salt to make a home-made toothpaste.[67]
Hydrogen peroxide may be used to treat acne,[68] although benzoyl peroxide is a more common treatment.
Practitioners of alternative medicine have advocated the use of hydrogen peroxide for various conditions, including emphysema, influenza, AIDS and cancer,[69] although there is no evidence of effectiveness and in some cases it may even be fatal.[70][71][72][73][74]
The practice calls for the daily consumption of hydrogen peroxide, either orally or by injection and is, in general, based around two precepts. First, that hydrogen peroxide is naturally produced by the body to combat infection; and second, that human pathogens (including cancer: See Warburg hypothesis) are anaerobic and cannot survive in oxygen-rich environments. The ingestion or injection of hydrogen peroxide is therefore believed to kill disease by mimicking the immune response in addition to increasing levels of oxygen within the body. This makes it similar to other oxygen-based therapies, such as ozone therapy and hyperbaric oxygen therapy.
Both the effectiveness and safety of hydrogen peroxide therapy is scientifically questionable. Hydrogen peroxide is produced by the immune system but in a carefully controlled manner. Cells called phagocytes engulf pathogens and then use hydrogen peroxide to destroy them. The peroxide is toxic to both the cell and the pathogen and so is kept within a special compartment, called a phagosome. Free hydrogen peroxide will damage any tissue it encounters via oxidative stress; a process which also has been proposed as a cause of cancer.[75] Claims that hydrogen peroxide therapy increase cellular levels of oxygen have not been supported. The quantities administered would be expected to provide very little additional oxygen compared to that available from normal respiration. It should also be noted that it is difficult to raise the level of oxygen around cancer cells within a tumour, as the blood supply tends to be poor, a situation known as tumor hypoxia.
Large oral doses of hydrogen peroxide at a 3% concentration may cause irritation and blistering to the mouth, throat, and abdomen as well as abdominal pain, vomiting, and diarrhea.[70] Intravenous injection of hydrogen peroxide has been linked to several deaths.[72][73][74]
The American Cancer Society states that "there is no scientific evidence that hydrogen peroxide is a safe, effective or useful cancer treatment."[71] Furthermore, the therapy is not approved by the U.S. FDA.
High-concentration H
2O
2 is referred to as "high-test peroxide" (HTP). It can be used either as a monopropellant (not mixed with fuel) or as the oxidizer component of a bipropellant rocket. Use as a monopropellant takes advantage of the decomposition of 70–98% concentration hydrogen peroxide into steam and oxygen. The propellant is pumped into a reaction chamber, where a catalyst, usually a silver or platinum screen, triggers decomposition, producing steam at over 600 °C (1,112 °F), which is expelled through a nozzle, generating thrust. H
2O
2 monopropellant produces a maximal specific impulse (Isp) of 161 s (1.6 kN·s/kg). Peroxide was the first major monopropellant adopted for use in rocket applications. Hydrazine eventually replaced hydrogen-peroxide monopropellant thruster applications primarily because of a 25% increase in the vacuum specific impulse.[76] Hydrazine (toxic) and hydrogen peroxide (less-toxic [ACGIH TLV 0.01 and 1 ppm respectively]) are the only two monopropellants (other than cold gases) to have been widely adopted and utilized for propulsion and power applications. The Bell Rocket Belt, reaction-control systems for X-1, X-15, Centaur, Mercury, Little Joe, as well as the turbo-pump gas generators for X-1, X-15, Jupiter, Redstone and Viking used hydrogen peroxide as a monopropellant.[77]
As a bipropellant, H
2O
2 is decomposed to burn a fuel as an oxidizer. Specific impulses as high as 350 s (3.5 kN·s/kg) can be achieved, depending on the fuel. Peroxide used as an oxidizer gives a somewhat lower Isp than liquid oxygen, but is dense, storable, noncryogenic and can be more easily used to drive gas turbines to give high pressures using an efficient closed cycle. It can also be used for regenerative cooling of rocket engines. Peroxide was used very successfully as an oxidizer in World War II German rocket motors (e.g. T-Stoff, containing oxyquinoline stabilizer, for both the Walter HWK 109-500 Starthilfe RATO externally podded monopropellant booster system, and for the Walter HWK 109-509 rocket motor series used for the Me 163B), most often used with C-Stoff in a self-igniting hypergolic combination, and for the low-cost British Black Knight and Black Arrow launchers.
In the 1940s and 1950s, the Hellmuth Walter KG-conceived turbine used hydrogen peroxide for use in submarines while submerged; it was found to be too noisy and require too much maintenance compared to diesel-electric power systems. Some torpedoes used hydrogen peroxide as oxidizer or propellant. Operator error in the use of hydrogen-peroxide torpedoes was named as possible causes for the sinkings of HMS Sidon and the Russian submarine Kursk.[78] SAAB Underwater Systems is manufacturing the Torpedo 2000. This torpedo, used by the Swedish Navy, is powered by a piston engine propelled by HTP as an oxidizer and kerosene as a fuel in a bipropellant system.[79][80]
Hydrogen peroxide has various domestic uses, primarily as a cleaning and disinfecting agent.
Hydrogen peroxide reacts with certain di-esters, such as phenyl oxalate ester (cyalume), to produce chemiluminescence; this application is most commonly encountered in the form of glow sticks.
Some horticulturalists and users of hydroponics advocate the use of weak hydrogen peroxide solution in watering solutions. Its spontaneous decomposition releases oxygen that enhances a plant's root development and helps to treat root rot (cellular root death due to lack of oxygen) and a variety of other pests.[81][82]
Laboratory tests conducted by fish culturists in recent years have demonstrated that common household hydrogen peroxide can be used safely to provide oxygen for small fish. The hydrogen peroxide releases oxygen by decomposition when it is exposed to catalysts such as manganese dioxide.
Regulations vary, but low concentrations, such as 6%, are widely available and legal to buy for medical use. Most over-the-counter peroxide solutions are not suitable for ingestion. Higher concentrations may be considered hazardous and are typically accompanied by a Material Safety Data Sheet (MSDS). In high concentrations, hydrogen peroxide is an aggressive oxidizer and will corrode many materials, including human skin. In the presence of a reducing agent, high concentrations of H
2O
2 will react violently.
High-concentration hydrogen peroxide streams, typically above 40%, should be considered hazardous due to concentrated hydrogen peroxide's meeting the definition of a DOT oxidizer according to U.S. regulations, if released into the environment. The EPA Reportable Quantity (RQ) for D001 hazardous wastes is 100 pounds (45 kg), or approximately 10 US gallons (38 L), of concentrated hydrogen peroxide.
Hydrogen peroxide should be stored in a cool, dry, well-ventilated area and away from any flammable or combustible substances. It should be stored in a container composed of non-reactive materials such as stainless steel or glass (other materials including some plastics and aluminium alloys may also be suitable).[83] Because it breaks down quickly when exposed to light, it should be stored in an opaque container, and pharmaceutical formulations typically come in brown bottles that block light.[84]
Hydrogen peroxide, either in pure or diluted form, can pose several risks, the main one being that it forms explosive mixtures upon contact with organic compounds.[85] Highly concentrated hydrogen peroxide itself is unstable and can cause a boiling liquid expanding vapour explosion (BLEVE) of the remaining liquid. Distillation of hydrogen peroxide at normal pressures is thus highly dangerous. It is also corrosive, especially when concentrated, but even domestic-strength solutions can cause irritation to the eyes, mucous membranes and skin.[86] Swallowing hydrogen peroxide solutions is particularly dangerous, as decomposition in the stomach releases large quantities of gas (10 times the volume of a 3% solution), leading to internal bloating. Inhaling over 10% can cause severe pulmonary irritation.[87]
With a significant vapour pressure (1.2 kPa at 50 °C[88]), hydrogen-peroxide vapour is potentially hazardous. According to U.S. NIOSH, the immediately dangerous to life and health (IDLH) limit is only 75 ppm.[89] The U.S. Occupational Safety and Health Administration (OSHA) has established a permissible exposure limit of 1.0 ppm calculated as an 8-hour time-weighted average (29 CFR 1910.1000, Table Z-1).[85] Hydrogen peroxide has also been classified by the American Conference of Governmental Industrial Hygienists (ACGIH) as a "known animal carcinogen, with unknown relevance on humans".[90] For workplaces where there is a risk of exposure to the hazardous concentrations of the vapours, continuous monitors for hydrogen peroxide should be used. Information on the hazards of hydrogen peroxide is available from OSHA[85] and from the ATSDR.[91]
Wikiversity has learning resources about Observing the Effects of Concentration on Enzyme Activity |
Notes
Bibliography
Hydrogen compounds
|
|
---|---|
|
Antiseptics and disinfectants (D08)
|
|
---|---|
Acridine derivatives |
|
Biguanides and amidines |
|
Phenol and derivatives |
|
Nitrofuran derivatives |
|
Iodine products |
|
Quinoline derivatives |
|
Quaternary ammonium compounds |
|
Mercurial products |
|
Silver compounds |
|
Alcohols |
|
Other |
|
|
Stomatological preparations (A01)
|
|
---|---|
Caries prophylaxis |
|
Infection and antiseptics |
|
Corticosteroids (Glucocorticoids) |
|
Other |
|
Drugs used for diseases of the ear (S02)
|
|
---|---|
Infection |
|
Corticosteroids |
|
Analgesics and anesthetics |
|
Human hair color
|
|
---|---|
Hair color |
|
Hair coloring |
|
Other |
|
Molecules detected in outer space
|
||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Molecules |
|
|||||||||||||||||||
Deuterated molecules |
|
|||||||||||||||||||
Unconfirmed |
|
|||||||||||||||||||
Related |
|
|||||||||||||||||||
|
Oxygen compounds
|
|
---|---|
|
|
Chemical formulas
|
TRP channel modulators
|
|||||
---|---|---|---|---|---|
TRPA |
|
||||
TRPC |
|
||||
TRPM |
|
||||
TRPML |
|
||||
TRPP |
|
||||
TRPV |
|
||||
See also: Receptor/signaling modulators • Ion channel modulators
|
Authority control |
|
---|
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
関連記事 | 「H2O」 |
.