For the song by Phoenix, see Chloroform (song).
Chloroform |
|
|
|
Other names
Trichloromethane; Formyl trichloride; Methane trichloride; Methyl trichloride; Methenyl trichloride; TCM; Freon 20; Refrigerant-20; R-20; UN 1888
|
Identifiers |
CAS number |
67-66-3 Y |
PubChem |
6212 |
ChemSpider |
5977 Y |
UNII |
7V31YC746X Y |
EC number |
200-663-8 |
KEGG |
C13827 Y |
ChEBI |
CHEBI:35255 Y |
ChEMBL |
CHEMBL44618 Y |
RTECS number |
FS9100000 |
ATC code |
N01AB02 |
Jmol-3D images |
Image 1 |
|
-
InChI=1S/CHCl3/c2-1(3)4/h1H Y
Key: HEDRZPFGACZZDS-UHFFFAOYSA-N Y
InChI=1/CHCl3/c2-1(3)4/h1H
Key: HEDRZPFGACZZDS-UHFFFAOYAG
|
Properties |
Molecular formula |
CHCl3 |
Molar mass |
119.38 g mol−1 |
Appearance |
Colorless liquid |
Odor |
Heavy, ethereal odor |
Density |
1.564 g/cm3 (-20 °C)
1.489 g/cm3 (25 °C)
1.394 g/cm3 (60 °C) |
Melting point |
−63.5 °C (−82.3 °F; 209.7 K) |
Boiling point |
61.15 °C (142.07 °F; 334.30 K)
decomposes at 450 °C |
Solubility in water |
1.062 g/100 mL (0 °C)
0.809 g/100 mL (20 °C)
0.732 g/100 mL (60 °C) |
Solubility |
Soluble in benzene
Miscible in diethyl ether, oils, ligroin, alcohol, CCl4, CS2 |
Solubility in acetone |
≥ 10 g/100 mL (19 °C) |
Solubility in dimethyl sulfoxide |
≥ 10 g/100 mL (19 °C) |
Vapor pressure |
0.62 kPa (-40 °C)
7.89 kPa (0 °C)
25.9 kPa (25 °C)
313 kPa (100 °C)
2.26 MPa (200 °C) |
kH |
3.67 L·atm/mol (24 °C) |
Acidity (pKa) |
15.7 (20 °C) |
Thermal conductivity |
0.13 W/m·K (20 °C) |
Refractive index (nD) |
1.4459 (20 °C) |
Viscosity |
0.563 cP (20 °C) |
Structure |
Molecular shape |
Tetrahedral |
Dipole moment |
1.15 D |
Thermochemistry |
Specific
heat capacity C |
114.25 J/mol·K |
Std molar
entropy So298 |
202.9 J/mol·K |
Std enthalpy of
formation ΔfHo298 |
-134.3 kJ/mol |
Gibbs free energy ΔG |
-71.1 kJ/mol |
Std enthalpy of
combustion ΔcHo298 |
473.21 kJ/mol |
Hazards |
MSDS |
External MSDS |
GHS pictograms |
|
GHS signal word |
Warning |
GHS hazard statements |
H302, H315, H319, H332, H336, H351, H361, H373 |
GHS precautionary statements |
P261, P281, P305+351+338 |
EU classification |
Xn Xi
Carc. Cat. 2B |
R-phrases |
R22, R38, R40, R48/20/22 |
S-phrases |
(S2), S36/37 |
NFPA 704 |
|
Flash point |
Non-flammable |
U.S. Permissible
exposure limit (PEL) |
50 ppm (240 mg/m3) (OSHA) |
LD50 |
1250 mg/kg (rats, oral) |
Supplementary data page |
Structure and
properties |
n, εr, etc. |
Thermodynamic
data |
Phase behaviour
Solid, liquid, gas |
Spectral data |
UV, IR, NMR, MS |
Except where noted otherwise, data are given for materials in their standard state (at 25 °C (77 °F), 100 kPa) |
Y (verify) (what is: Y/N?) |
Infobox references |
|
|
Chloroform is an organic compound with formula CHCl3. It is one of the four chloromethanes.[1] The colorless, sweet-smelling, dense liquid is a trihalomethane, and is considered hazardous. Several million tons are produced annually as a precursor to PTFE and refrigerants, but its use for refrigerants is being phased out.[1]
Contents
- 1 Natural occurrence
- 2 History
- 2.1 Production
- 2.2 Deuterochloroform
- 2.3 Inadvertent formation of chloroform
- 3 Uses
- 3.1 Solvent
- 3.2 Reagent
- 3.3 Anesthetic
- 3.4 Criminal use
- 4 Safety
- 4.1 Conversion to phosgene
- 5 References
- 6 External links
Natural occurrence
The total global flux of chloroform through the environment is approximately 660 000 tonnes per year, and about 90 % of emissions are natural in origin. Many kinds of seaweed produce chloroform, and fungi are believed to produce chloroform in soil.
Chloroform volatilizes readily from soil and surface water and undergoes degradation in air to produce phosgene, dichloromethane, formyl chloride, carbon monoxide, carbon dioxide, and hydrogen chloride. Its halflife in air ranges from 55 to 620 days. Biodegradation in water and soil is slow. Chloroform does not bioaccumulate to any significant extent in aquatic organisms.[2]
History
Trichloromethane was synthesized independently by two groups in 1831: Liebig carried out the alkaline cleavage of chloral, whereas Soubeirain obtained the compound by the action of chlorine bleach on both ethanol and acetone. In 1835, Dumas prepared the substance by the alkaline cleavage of trichloroacetic acid. Regnault prepared trichloromethane by chlorination of monochloromethane. By the 1850s, chloroform was being produced on a commercial basis by using the Liebig procedure, which retained its importance until the 1960s. Today, trichloromethane — along with dichloromethane — is prepared exclusively and on a massive scale by the chlorination of methane and/or monochloromethane.[1]
Production
In industry, chloroform is produced by heating a mixture of chlorine and either chloromethane or methane.[1] At 400–500 °C, a free radical halogenation occurs, converting these precursors to progressively more chlorinated compounds:
- CH4 + Cl2 → CH3Cl + HCl
- CH3Cl + Cl2 → CH2Cl2 + HCl
- CH2Cl2 + Cl2 → CHCl3 + HCl
Chloroform undergoes further chlorination to yield carbon tetrachloride (CCl4):
- CHCl3 + Cl2 → CCl4 + HCl
The output of this process is a mixture of the four chloromethanes (chloromethane, dichloromethane, chloroform, and carbon tetrachloride), which can then be separated by distillation.[1]
Deuterochloroform
Main article: Deuterated chloroform
Deuterated chloroform is an isotopologue of chloroform with a single deuterium atom. CDCl3 is a common solvent used in NMR Spectroscopy. Deuterochloroform is produced by the haloform reaction[citation needed], the reaction of acetone (or ethanol) with sodium hypochlorite or calcium hypochlorite.[1] The haloform process is now obsolete for the production of ordinary chloroform. Deuterochloroform can also be prepared by the reaction of sodium deuteroxide with chloral hydrate,[citation needed] or from ordinary chloroform.[3]
Inadvertent formation of chloroform
The haloform reaction can also occur inadvertently in domestic settings. Bleaching with hypochlorite generates halogenated compounds in side reactions; chloroform is the main byproduct.[4] Sodium hypochlorite solution (chlorine bleach) mixed with common household liquids such as acetone, butanone, ethanol, or isopropyl alcohol can produce some chloroform, in addition to other compounds such as chloroacetone or dichloroacetone.
Uses
The major use of chloroform today is in the production of the chlorodifluoromethane, a major precursor to tetrafluoroethylene:
- CHCl3 + 2 HF → CHClF2 + 2 HCl
The reaction is conducted in the presence of a catalytic amount of antimony pentafluoride. Chlorodifluoromethane is then converted into tetrafluoroethylene, the main precursor to Teflon. Before the Montreal Protocol, chlorodifluoromethane (designated as R-22) was also a popular refrigerant.
Solvent
Worldwide, chloroform is also used in pesticide formulations, as a solvent for fats, oils, rubber, alkaloids, waxes, gutta-percha, and resins, as a cleansing agent, grain fumigant, in fire extinguishers, and in the rubber industry.[2][5] CDCl3 is a common solvent used in NMR spectroscopy.
Reagent
As a reagent, chloroform serves as a source of the dichlorocarbene CCl2 group.[6] It reacts with aqueous sodium hydroxide usually in the presence of a phase transfer catalyst to produce dichlorocarbene, CCl2.[7][8] This reagent affects ortho-formylation of activated aromatic rings such as phenols, producing aryl aldehydes in a reaction known as the Reimer-Tiemann reaction. Alternatively the carbene can be trapped by an alkene to form a cyclopropane derivative. In the Kharasch addition chloroform forms the CHCl2 free radical in addition to alkenes.
The most important reaction of chloroform is that with hydrogen fluoride in the presence of antimony pentahalides to give monochlorodifluoromethane (CFC 22), a precursor in the production of polytetrafluoroethylene (Teflon).[1]
Anesthetic
Antique bottles of chloroform
Chloroform was once a widely used anesthetic. On 4 November 1847, the Scottish obstetrician James Young Simpson discovered the anesthetic qualities of chloroform.[9] The use of chloroform during surgery expanded rapidly thereafter in Europe. In the 1850s, chloroform was used during the birth of Queen Victoria's last two children.[10] In the United States, chloroform began to replace ether as an anesthetic at the beginning of the 20th century; however, it was quickly abandoned in favor of ether upon discovery of its toxicity, especially its tendency to cause fatal cardiac arrhythmia analogous to what is now termed "sudden sniffer's death". Some people used chloroform as a recreational drug or to attempt suicide.[11] One possible mechanism of action for chloroform is that it increases movement of potassium ions through certain types of potassium channels in nerve cells.[12] Chloroform could also be mixed with other anesthetic agents such as ether to make C.E. mixture, or ether and alcohol to make A.C.E. mixture. In 1848, Hannah Greener, a 15-year-old girl who was having an infected toenail removed, died after being given the anesthetic.[13] A number of physically fit patients died after inhaling it. However, in 1848 John Snow developed an inhaler that regulated the dosage and so successfully reduced the number of deaths.[14]
Criminal use
Chloroform has been reputed to be used by criminals to knock out, daze or even murder their victims. Joseph Harris was charged in 1894 with using chloroform to rob people.[15] In 1901, chloroform was also implicated in the murder of the American businessman William Marsh Rice, the namesake of the institution now known as Rice University. Chloroform was also deemed to be a factor in the alleged murder of a woman in 1991 when she was asphyxiated while sleeping.[16] In a 2007 plea bargain a man confessed to using stun guns and chloroform to sexually assault minors.[17] Use of chloroform as an incapacitating agent has become widely recognized, bordering on clichéd, due to the popularity of crime fiction authors having criminals use chloroform-soaked rags to render victims unconscious. However, it is nearly impossible to incapacitate someone using chloroform.[18] It takes at least 5 minutes of inhaling an item soaked in chloroform to render a person unconscious. Most criminal cases involving chloroform also involve another drug being co-administered, such as alcohol or diazepam, or the victim being found to have been complicit in its administration. After a person has lost consciousness due to chloroform inhalation, a continuous volume must be administered and the chin must be supported in order to keep the tongue from obstructing the airway, a difficult procedure even for an anesthesiologist. In 1865 as a direct result of the criminal reputation chloroform had gained, medical journal The Lancet offered a "permanent scientific reputation" to anyone who could demonstrate "instantaneous insensibility" using chloroform,[19] and as of 1998[update] no such demonstration has been forthcoming.[18]
Safety
Chloroform is well absorbed, metabolized, and eliminated rapidly by mammals after oral, inhalation, or dermal exposure. Accidental splashing into the eyes has caused irritation.[2] Prolonged dermal exposure can result in the development of sores as a result of defatting. Elimination is primarily from lungs in the form of chloroform and carbon dioxide; less than 1 % is excreted in urine.[5]
Chloroform is metabolized in the liver by the cytochrome P-450 enzymes, by oxidation to phosgene and by reduction to the dichloromethyl free radical. Other metabolites of chloroform include chloromethanol, hydrochloric acid, hydrogen chloride, and digluathionyl dithiocarbonate, with carbon dioxide as the predominant end product of metabolism.[20]
Chloroform causes depression of the central nervous system (CNS), ultimately producing deep coma and respiratory center depression.[20] When ingested, chloroform caused symptoms similar to those seen following inhalation. Serious illness has followed ingestion of 7.5 g. The mean lethal oral dose for an adult is estimated to be about 45 g.[2]
The anesthetic use of chloroform has been discontinued because it caused deaths due to respiratory and cardiac arrhythmias and failure. Following chloroform-induced anesthesia, some patients suffered nausea, vomiting, prostration, jaundice, and coma due to hepatic dysfunction. At autopsy, liver necrosis and degeneration have been observed.[2]
Chloroform has induced liver tumors in mice and kidney tumors in mice and rats.[2] The hepatotoxicity and nephrotoxicity of chloroform is thought to be due largely to phosgene.[20]
Conversion to phosgene
During prolonged storage in the presence of oxygen, chloroform converts slowly to phosgene, releasing HCl in the process. To prevent accidents, commercial chloroform is stabilized with ethanol or amylene, but samples that have been recovered or dried no longer contain any stabilizer. Amylene has been found ineffective, and the phosgene can affect analytes in samples, lipids, and nucleic acids dissolved in or extracted with chloroform.[21] Phosgene and HCl can be removed from chloroform by washing with saturated aqueous carbonate solutions, such as sodium bicarbonate. This procedure is simple and results in harmless products. Phosgene reacts with water to form carbon dioxide and HCl,[22] and the carbonate salt neutralizes the resulting acid.
Suspected samples can be tested for phosgene using filter paper (treated with 5% diphenylamine, 5% dimethylaminobenzaldehyde in alcohol, and then dried), which turns yellow in phosgene vapor. There are several colorimetric and fluorometric reagents for phosgene, and it can also be quantified with mass spectrometry.
References
- ^ a b c d e f g Rossberg, M. et al. “Chlorinated Hydrocarbons” in Ullmann’s Encyclopedia of Industrial Chemistry, 2006, Wiley-VCH, Weinheim. doi:10.1002/14356007.a06_233.pub2
- ^ a b c d e f Chloroform, CICAD 58, World Health Organization, 2004
- ^ Koch, Hans A. Cholorofom Deuteration Process. Canadian Patent 1085423. Patents.ic.gc.ca. Issued: 1980-09-09. Retrieved on 2012-08-13.
- ^ Hans Ulrich Süss (2007), "Bleaching", Ullmann's Encyclopedia of Industrial Chemistry (7th ed.), Wiley, p. 5
- ^ a b Jerrold B. Leikin; Frank P. Paloucek, eds. (2008), "Chloroform", Poisoning and Toxicology Handbook (4th ed.), Informa, p. 774
- ^ Srebnik, M.; Laloë, E. (2001) "Chloroform" in Encyclopedia of Reagents for Organic Synthesis, Wiley, doi:10.1002/047084289X.rc105
- ^ 1,6-Methano[10]annulene, Org. Synth., 1988 ; Coll. Vol. 6: 731
- ^ Gokel, G. W.; Widera, R. P.; Weber, W. P. (1988), Phase-Transfer Hofmann Carbylamine Reaction: tert-Butyl Isocyanide, Org. Synth. ; Coll. Vol. 6: 232
- ^ Gordon, H. Laing (November 2002). Sir James Young Simpson and Chloroform (1811–1870). The Minerva Group, Inc. pp. 106–109. ISBN 978-1-4102-0291-8. Retrieved 11 November 2011.
- ^ Anesthesia and Queen Victoria. Ph.ucla.edu. Retrieved on 2012-08-13.
- ^ Martin, William (3 July 1886). "A Case of Chloroform Poisoning; Recovery". Br Med J 2 (1331): 16–17. doi:10.1136/bmj.2.1331.16-a. PMC 2257365. PMID 20751619.
- ^ Patel, Amanda J.; Honoré, Eric; Lesage, Florian; Fink, Michel; Romey, Georges; Lazdunski, Michel (May 1999). "Inhalational anesthetics activate two-pore-domain background K+ channels". Nature Neuroscience 2 (5): 422–426. doi:10.1038/8084. PMID 10321245.
- ^ Knight, Paul R. III and Bacon, Douglas R. (2002). "An Unexplained Death: Hannah Greener and Chloroform". Anesthesiology 96 (5): 1250–3. doi:10.1097/00000542-200205000-00030. PMID 11981167.
- ^ Snow, John (1858). "On Chloroform and Other Anaesthetics and Their Action and Administration". pp. 82–85.
- ^ "Knock-out and Chloroform". The Philadelphia Record. 9 February 1894. Retrieved 31 March 2011.
- ^ "Chloroform case retrial underway". Record-Journal. 7 July 1993. Retrieved 31 March 2011.
- ^ "Man admits to raping friends' daughters". USA Today. 6 November 2007. Retrieved 31 March 2011.
- ^ a b Payne, J. P. (July 1998). "The criminal use of chloroform". Anaesthesia 53 (7): 685–690. doi:10.1046/j.1365-2044.1998.528-az0572.x.
- ^ Medical Annotation. Chloroform amongst Thieves. The Lancet, 1865; 2: 490 – 1.
- ^ a b c Anna M Fan (2005), "Chloroform", Encyclopedia of Toxicology 1 (2nd ed.), Elsevier, pp. 561–565
- ^ Turk, Eric (2 March 1998). "Phosgene from Chloroform". Chemical & Engineering News 76 (9): 6. doi:10.1021/cen-v076n009.p006.
- ^ phosgene (chemical compound). Encyclopædia Britannica. Retrieved on 2013-08-16.
External links
|
Wikimedia Commons has media related to Chloroform. |
- Chloroform "The Molecular Lifesaver" An article at Oxford University providing facts about chloroform.
- Concise International Chemical Assessment Document 58
- IARC Summaries & Evaluations: Vol. 1 (1972), Vol. 20 (1979), Suppl. 7 (1987), Vol. 73 (1999)
- International Chemical Safety Card 0027
- NIOSH Pocket Guide to Chemical Hazards 0127
- NIST Standard Reference Database
- Story on Chloroform from BBC's The Material World (28 July 2005)
- Sudden Sniffer's Death Syndrome article at Carolinas Poison Center
- Calculation of vapor pressure, liquid density, dynamic liquid viscosity, surface tension of chloroform
- ChemSub Online: Chloroform – Methane, trichloro-
Halomethanes
|
|
Monosubstituted |
|
|
Disubstituted |
- CH2F2
- CH2ClF
- CH2BrF
- CH2FI
- CH2Cl2
- CH2BrCl
- CH2ClI
- CH2Br2
- CH2BrI
- CH2I2
|
|
Trisubstituted |
- CHF3
- CHClF2
- CHBrF2
- CHF2I
- CHCl2F
- C*HBrClF
- C*HClFI
- CHBr2F
- C*HBrFI
- CHFI2
- CHCl3
- CHBrCl2
- CHCl2I
- CHBr2Cl
- C*HBrClI
- CHClI2
- CHBr3
- CHBr2I
- CHBrI2
- CHI3
|
|
Tetrasubstituted |
- CF4
- CClF3
- CBrF3
- CF3I
- CCl2F2
- CBrClF2
- CClF2I
- CBr2F2
- CBrF2I
- CF2I2
- CCl3F
- CBrCl2F
- CCl2FI
- CBr2ClF
- C*BrClFI
- CClFI2
- CBr3F
- CBr2FI
- CBrFI2
- CFI3
- CCl4
- CBrCl3
- CCl3I
- CBr2Cl2
- CBrCl2I
- CCl2I2
- CBr3Cl
- CBr2ClI
- CBrClI2
- CClI3
- CBr4
- CBr3I
- CBr2I2
- CBrI3
- CI4
|
|
* Chiral compound.
|
|
Hallucinogens
|
|
Psychedelics
5-HT2AR agonists |
Lysergamides
|
- AL-LAD
- ALD-52
- BU-LAD
- IP-LAD
- Diallyllysergamide
- Dimethyllysergamide
- Ergometrine
- ETH-LAD
- LAE-32
- LPD-824
- LSA
- LSD
- LSD-Pip
- LSH
- LSM-775
- Lysergic acid 2-butyl amide
- LSZ
- Lysergic acid 3-pentyl amide
- Methylergometrine
- Methylisopropyllysergamide
- Methysergide
- N1-Methyl-lysergic acid diethylamide
- PARGY-LAD
- PRO-LAD
|
|
Phenethylamines
|
|
|
Piperazines
|
|
|
Tryptamines
|
- 1-Methyl-5-methoxy-diisopropyltryptamine
- 2,N,N-TMT
- 4,5-DHP-AMT
- 4,5-DHP-DMT
- 4-Acetoxy-DALT
- 4-Acetoxy-DET
- 4-Acetoxy-DiPT
- 4-Acetoxy-DMT
- 4-Acetoxy-DPT
- 4-Acetoxy-MiPT
- 4-HO-5-MeO-DMT
- 4-HO-DBT
- 4-HO-DPT
- 4-HO-MET
- 4-HO-MPMI
- 4-HO-MPT
- 4,N,N-TMT
- 4-Propionyloxy-DMT
- 5,6-diBr-DMT
- 5-AcO-DMT
- 5-Bromo-DMT
- 5-Me-MIPT
- 5-MeO-2,N,N-TMT
- 5-MeO-4,N,N-TMT
- 5-MeO-α,N,N-TMT
- 5-MeO-α-ET
- 5-MeO-α-MT
- 5-MeO-DALT
- 5-MeO-DET
- 5-MeO-DiPT
- 5-MeO-DMT
- 5-MeO-DPT
- 5-MeO-EiPT
- 5-MeO-MET
- 5-MeO-MiPT
- 5-MeO-MPMI
- 5-N,N-TMT
- 7,N,N-TMT
- α-ET
- α-MT
- α,N,N-TMT
- Aeruginascin
- Baeocystin
- Bufotenin
- DALT
- DBT
- DCPT
- DET
- DIPT
- DMT
- DPT
- EiPT
- Ethocin
- Ethocybin
- Ibogaine
- Iprocin
- MET
- Miprocin
- MiPT
- Norbaeocystin
- Noribogaine
- PiPT
- Psilocin
- Psilocybin
- Voacangine
|
|
Others
|
- AL-38022A
- ALPHA
- Efavirenz
- Elemicin
- M-ALPHA
- Myristicin
- RH-34
|
|
|
Dissociatives
NMDAR antagonists |
Adamantanes
|
- Amantadine
- Memantine
- Rimantadine
|
|
Arylcyclohexylamines
|
- 3-MeO-PCP
- 4-MeO-PCP
- Dieticyclidine
- Diphenidine
- Esketamine
- Ethketamine
- Eticyclidine
- Gacyclidine
- Ketamine
- Methoxetamine
- Methoxyketamine
- Neramexane
- PCPr
- Phencyclidine
- Rolicyclidine
- Tenocyclidine
- Tiletamine
|
|
Morphinans
|
- Dextrallorphan
- Dextromethorphan
- Dextrorphan
- Racemethorphan
- Racemorphan
|
|
Others
|
- 2-MDP
- 8A-PDHQ
- Aptiganel
- Dexoxadrol
- Dizocilpine
- Etoxadrol
- Ibogaine
- Midafotel
- NEFA
- Nitrous oxide
- Noribogaine
- Perzinfotel
- Remacemide
- Selfotel
- Xenon
|
|
|
Deliriants
mAChR antagonists |
- 3-Quinuclidinyl benzilate
- Atropine
- Benactyzine
- Benzatropine
- Benzydamine
- Biperiden
- BRN-1484501
- Brompheniramine
- CAR-226,086
- CAR-301,060
- CAR-302,196
- CAR-302,282
- CAR-302,368
- CAR-302,537
- CAR-302,668
- Chloropyramine
- Chlorphenamine
- Clemastine
- CS-27349
- Cyclizine
- Cyproheptadine
- Dicycloverine
- Dimenhydrinate
- Diphenhydramine
- Ditran
- Doxylamine
- EA-3167
- EA-3443
- EA-3580
- EA-3834
- Flavoxate
- Hyoscyamine
- Meclozine
- Mepyramine
- N-Ethyl-3-piperidyl benzilate
- N-Methyl-3-piperidyl benzilate
- Orphenadrine
- Oxybutynin
- Pheniramine
- Phenyltoloxamine
- Procyclidine
- Promethazine
- Scopolamine
- Tolterodine
- Trihexyphenidyl
- Tripelennamine
- Triprolidine
- WIN-2299
|
|
Miscellaneous |
Cannabinoids
CB1R agonists
|
Phytocannabinoids
|
- Cannabinol
- THC (Dronabinol)
- THCV
- (Cannabidiol has different mechanism of action)
|
|
Synthetic
|
- 4-HTMPIPO
- 5F-PB-22
- AB-001
- AB-005
- A-836,339
- AB-CHMINACA
- AB-FUBINACA
- AB-PINACA
- ADB-FUBINACA
- ADB-PINACA
- ADBICA
- AM-630
- AM-679
- AM-694
- AM-1220
- AM-1221
- AM-1235
- AM-1241
- AM-1248
- AM-2201
- AM-2232
- AM-2233
- APICA
- APINACA
- CB-13
- CP 47,497
- CP 55,244
- CP 55,940
- DMHP
- HU-210
- HU-308
- JWH-007
- JWH-015
- JWH-018
- JWH-019
- JWH-030
- JWH-073
- JWH-081
- JWH-098
- JWH-116
- JWH-122
- JWH-149
- JWH-167
- JWH-182
- JWH-193
- JWH-198
- JWH-200
- JWH-203
- JWH-210
- JWH-250
- JWH-251
- JWH-398
- JWH-424
- JTE 7-31
- JTE-907
- Levonantradol
- MAM-2201
- MDA-19
- MN-25
- NESS-0327
- NESS-040C5
- Nabilone
- Nabitan
- Org 28611
- Parahexyl
- QUCHIC
- QUPIC
- RCS-4
- RCS-8
- SDB-006
- STS-135
- THC-O-acetate
- THC-O-phosphate
- UR-144
- WIN 55,212-2
- XLR-11
|
|
|
D2R agonists
|
- Apomorphine
- Aporphine
- Bromocriptine
- Cabergoline
- Lisuride
- Memantine
- Nuciferine
- Pergolide
- Piribedil
- Pramipexole
- Ropinirole
- Rotigotine
Also indirect D2 agonists, such as dopamine reuptake inhibitors (cocaine, methylphenidate), releasing agents (amphetamine, methamphetamine), and precursors (levodopa).
|
|
GABAAR agonists
|
- Eszopiclone
- Gaboxadol
- Ibotenic acid
- Muscimol
- Zaleplon
- Zolpidem
- Zopiclone
|
|
Inhalants
Mixed MOA
|
- Aliphatic hydrocarbons
- Butane
- Gasoline
- Kerosene
- Propane
- Aromatic hydrocarbons
- Ethers
- Haloalkanes
- Chlorofluorocarbons
- Chloroform
|
|
κOR agonists
|
- 2-EMSB
- 2-MMSB
- Alazocine
- Bremazocine
- Butorphanol
- Cyclazocine
- Cyprenorphine
- Dextrallorphan
- Dezocine
- Enadoline
- Herkinorin
- HZ-2
- Ibogaine
- Ketazocine
- LPK-26
- Metazocine
- Nalbuphine
- Nalorphine
- Noribogaine
- Pentazocine
- Phenazocine
- Salvinorin A
- Spiradoline
- Tifluadom
- U-50488
- U-69,593
|
|
MAO inhibitors
|
- Harmaline
- Harmine
- Tetrahydroharmine
- Yohimbine
|
|
σR agonists
|
- DMT
- Dextrallorphan
- Dextromethorphan
- Dextrorphan
- Noscapine
|
|
Others
|
- Glaucine
- Isoaminile
- Pukateine
|
|
|
Anesthetic: General anesthetics (N01A)
|
|
Inhalation |
Ethers
|
- Diethyl ether
- Methoxypropane
- Vinyl ether
- halogenated ethers
- Desflurane
- Enflurane
- Isoflurane
- Methoxyflurane
- Sevoflurane
|
|
Haloalkanes
|
- Chloroform
- Halothane#
- Trichloroethylene
|
|
Others
|
- Cyclopropane
- Ethylene
- Nitrous oxide#
- Xenon
|
|
|
Injection |
Barbiturates
|
- Hexobarbital
- Methohexital
- Narcobarbital
- Thiopental#
- Thiotetrabarbital
|
|
Opioids
|
- Alfentanil
- Anileridine
- Fentanyl
- Phenoperidine
- Remifentanil
- Sufentanil
|
|
Neuroactive steroids
|
|
|
Others
|
- Droperidol
- Etomidate
- Fospropofol
- gamma-Hydroxybutyric acid
- Ketamine# /Esketamine
- Midazolam
- Propanidid
- Propofol
|
|
|
- #WHO-EM
- ‡Withdrawn from market
- Clinical trials:
- †Phase III
- §Never to phase III
|
|
|
anat (n/s/m/p/4/e/b/d/c/a/f/l/g)/phys/devp
|
noco (m/d/e/h/v/s)/cong/tumr, sysi/epon, injr
|
proc, drug (N1A/2AB/C/3/4/7A/B/C/D)
|
|
|
|
Glutamatergics
|
|
Ionotropic |
AMPA
|
- Agonists: 5-Fluorowillardiine
- AMPA
- Domoic acid
- Quisqualic acid; Positive allosteric modulators: Aniracetam
- Cyclothiazide
- CX-516
- CX-546
- CX-614
- CX-691
- CX-717
- Diazoxide
- HCTZ
- IDRA-21
- LY-392,098
- LY-404,187
- LY-451,395
- LY-451,646
- LY-503,430
- Org 26576
- Oxiracetam
- PEPA
- Piracetam
- Pramiracetam
- S-18986
- Sunifiram
- Unifiram
Antagonists: ATPO
- Barbiturates
- BGG492
- Caroverine
- CNQX
- DNQX
- GYKI-52466
- NBQX
- Perampanel
- Talampanel
- Tezampanel
- Topiramate; Negative allosteric modulators: GYKI-53,655
|
|
NMDA
|
- Agonists: Glutamate/active site competitive agonists: Aspartate
- Glutamate
- Homoquinolinic acid
- Ibotenic acid
- NMDA
- Quinolinic acid
- Tetrazolylglycine; Glycine site agonists: ACBD
- ACPC
- ACPD
- Alanine
- CCG
- Cycloserine
- DHPG
- Fluoroalanine
- Glycine
- GLYX-13
- HA-966
- L-687,414
- Milacemide
- NRX-1074
- Sarcosine
- Serine
- Tetrazolylglycine; Polyamine site agonists: Acamprosate
- Spermidine
- Spermine
Antagonists: Competitive antagonists: AP5 (APV)
- AP7
- CGP-37849
- CGP-39551
- CGP-39653
- CGP-40116
- CGS-19755
- CPP
- LY-233,053
- LY-235,959
- LY-274,614
- MDL-100,453
- Midafotel (d-CPPene)
- NPC-12,626
- NPC-17,742
- PBPD
- PEAQX
- Perzinfotel
- PPDA
- SDZ-220581
- Selfotel; Noncompetitive antagonists: ARR-15,896
- Caroverine
- Dexanabinol
- FPL-12495
- FR-115,427
- Hodgkinsine
- Magnesium
- MDL-27,266
- NPS-1506
- Psychotridine
- Zinc; Uncompetitive pore blockers: 2-MDP
- 3-MeO-PCP
- 8A-PDHQ
- Alaproclate
- Amantadine
- Aptiganel
- ARL-12,495
- ARL-15,896-AR
- ARL-16,247
- Budipine
- Delucemine
- Dexoxadrol
- Dextrallorphan
- Dieticyclidine
- Dizocilpine
- Endopsychosin
- Esketamine
- Etoxadrol
- Eticyclidine
- Gacyclidine
- Ibogaine
- Indantadol
- Ketamine
- Ketobemidone
- Lanicemine
- Loperamide
- Memantine
- Methadone (Levomethadone)
- Methorphan (Dextromethorphan
- Levomethorphan)
- Methoxetamine
- Milnacipran
- Morphanol (Dextrorphan
- Levorphanol)
- NEFA
- Neramexane
- Nitromemantine
- Nitrous oxide
- Noribogaine
- Orphenadrine
- PCPr
- Pethidine (meperidine)
- Phencyclamine
- Phencyclidine
- Propoxyphene
- Remacemide
- Rhynchophylline
- Rimantadine
- Rolicyclidine
- Sabeluzole
- Tenocyclidine
- Tiletamine
- Tramadol
- Xenon; Glycine site antagonists: ACEA-1021
- ACEA-1328
- ACC
- Carisoprodol
- CGP-39653
- CKA
- DCKA
- Felbamate
- Gavestinel
- GV-196,771
- Kynurenic acid
- L-689,560
- L-701,324
- Licostinel
- LU-73,068
- MDL-105,519
- Meprobamate
- MRZ 2/576
- PNQX
- ZD-9379; NR2B subunit antagonists: Besonprodil
- CERC-301 (MK-0657)
- CO-101,244 (PD-174,494)
- Eliprodil
- Haloperidol
- Ifenprodil
- Isoxsuprine
- Nylidrin
- Ro8-4304
- Ro25-6981
- Traxoprodil; Polyamine site antagonists: Arcaine
- Co 101676
- Diaminopropane
- Acamprosate
- Diethylenetriamine
- Huperzine A
- Putrescine
- Ro 25-6981; Unclassified/unsorted antagonists: Chloroform
- Diethyl ether
- Diphenidine
- Enflurane
- Ethanol (alcohol)
- Halothane
- Isoflurane
- Methoxyflurane
- Toluene
- Trichloroethane
- Trichloroethanol
- Trichloroethylene
- Xylene
|
|
Kainate
|
- Agonists: 5-Iodowillardiine
- ATPA
- Domoic acid
- Kainic acid
- LY-339,434
- SYM-2081
Antagonists: BGG492
- CNQX
- DNQX
- LY-382,884
- NBQX
- NS102
- Tezampanel
- Topiramate
- UBP-302; Negative allosteric modulators: NS-3763
|
|
|
Metabotropic |
Group I
|
- Agonists: Non-selective: ACPD
- DHPG
- Quisqualic acid; mGlu1-selective: Ro01-6128
- Ro67-4853
- Ro67-7476
- VU-71; mGlu5-selective: ADX-47273
- CDPPB
- CHPG
- DFB
- VU-1545
Antagonists: Non-selective: MCPG
- NPS-2390; mGlu1-selective: BAY 36-7620
- CPCCOEt
- LY-367,385
- LY-456,236; mGlu5-selective: CTEP
- DMeOB
- LY-344,545
- Mavoglurant
- SIB-1757
- SIB-1893; Negative allosteric modulators:
- Basimglurant
- Dipraglurant
- Fenobam
- GRN-529
- MPEP
- MTEP
- Raseglurant
|
|
Group II
|
- Agonists: Non-selective: CBiPES
- DCG-IV
- Eglumegad
- LY-379,268
- LY-404,039
- LY-487,379
- MGS-0028; mGlu2-selective: BINA
- LY-566,332
Antagonists: Non-selective: APICA
- EGLU
- HYDIA
- LY-307,452
- LY-341,495
- MCPG
- MGS-0039; mGlu2-selective: PCCG-4
- mGlu3-selective: CECXG; Negative allosteric modulators: Decoglurant
- RO4491533
|
|
Group III
|
- Agonists: Non-selective: L-AP4; mGlu4-selective: PHCCC
- VU-001,171
- VU-0155,041; mGlu7-selective: AMN082; mGlu8-selective: DCPG
Antagonists: Non-selective: CPPG
- MAP4
- MSOP
- MPPG
- MTPG
- UBP-1112; mGlu7-selective: MMPIP
|
|
|
Transporter
(inhibitors) |
|
|
Others |
Precursors
|
|
|
Cofactors
|
- α-Ketoglutaric acid
- Iron
- Sulfur
- Vitamin B2 (as FAD and FMN)
- Vitamin B3 (as NADPH)
|
|
Others
|
- N-Acetylcysteine
- L-Theanine
- Riluzole
- Tianeptine
|
|
|
Hypnotics/sedatives (N05C)
|
|
GABAA
agonists/PAMs |
|
|
GABAB
agonists |
- 1,4-Butanediol
- Aceburic acid
- GABOB
- GHB (Sodium oxybate)
- GBL
- GVL
|
|
H1 inverse
agonists |
Antihistamines: |
- Captodiame
- Cyproheptadine
- Diphenhydramine
- Doxylamine
- Hydroxyzine
- Methapyrilene
- Pheniramine
- Promethazine
- Propiomazine
|
|
Antidepressants |
- Tricyclic antidepressants
- Amitriptyline
- Doxepin
- Trimipramine, etc.
- Tetracyclic antidepressants
- Mianserin
- Mirtazapine, etc.
|
|
Antipsychotics |
- Typical antipsychotics
- Chlorpromazine
- Thioridazine, etc.
- Atypical antipsychotics
- Olanzapine
- Quetiapine
- Risperidone, etc.
|
|
|
α1-Adrenergic
antagonists |
Antidepressants |
- Serotonin antagonists and reuptake inhibitors
- Tricyclic antidepressants
- Amitriptyline
- Doxepin
- Trimipramine, etc.
- Tetracyclic antidepressants
|
|
Antipsychotics |
- Typical antipsychotics
- Chlorpromazine
- Thioridazine, etc.
- Atypical antipsychotics
- Olanzapine
- Quetiapine
- Risperidone, etc.
|
|
Others: |
|
|
|
α2-Adrenergic
agonists |
- 4-NEMD
- Clonidine
- Detomidine
- Dexmedetomidine
- Lofexidine
- Medetomidine
- Romifidine
- Tizanidine
- Xylazine
|
|
5-HT2A
antagonists |
Antidepressants |
- Serotonin antagonists and reuptake inhibitors
- Tricyclic antidepressants
- Amitriptyline
- Doxepin
- Trimipramine, etc.
- Tetracyclic antidepressants
- Mianserin
- Mirtazapine, etc.
|
|
Antipsychotics |
- Typical antipsychotics
- Chlorpromazine
- Thioridazine, etc.
- Atypical antipsychotics
- Olanzapine
- Quetiapine
- Risperidone, etc.
|
|
Others: |
- Eplivanserin
- Niaprazine
- Pruvanserin
- Volinanserin
|
|
|
Melatonin
agonists |
- Agomelatine
- LY-156,735
- Melatonin
- Ramelteon
- Tasimelteon
|
|
Orexin
antagonists |
- Almorexant
- SB-334,867
- SB-408,124
- SB-649,868
- Suvorexant
- TCS-OX2-29
|
|
Others |
- Acecarbromal
- Apronal
- Bromisoval
- Cannabidiol
- Carbromal
- Embutramide
- Evoxine
- Fenadiazole
- Gabapentin
- Kavalactones
- Mephenoxalone
- Opioids
- Passion flower
- Scopolamine
- UMB68
- Valnoctamide
|
|
Chloroform committees and commissions
|
|
1847 |
(Chloroform first used)
|
Antique bottles of chloroform
|
|
1864 |
- Chloroform Committee
- Royal Medico-Chirurgical Society
- See also: Clover bag
|
|
1877 |
- The Glasgow Committee on Anæsthetics
- British Medical Association
|
|
1888 |
- First Hyderabad Commissions
- Surgeon-Major Lawrie of the Bengal Medical Service appointed by the Nizam: Mahbub Ali Khan, Asaf Jah VI
- See also: Lawrie's Apparatus
|
|
1889 |
- Second Hyderabad Commission (Surgeon-Major Lawrie with T. Lauder Brunton FRS of St. Bartholomew's Hospital)
|
|
1891 |
- British Medical Association Anæsthetics Committee
- British Medical Association
|
|
1893 |
- The Lancet commissioned Dudley Buxton to implement a questionnaire to report deaths, the method of induction and the clinical stance of chloroform.
|
|
1901 |
- The Special Chloroform Committee of the British Medical Association
- British Medical Association
|
|
1912 |
- American Medical Association Committee on Anæsthesia (American Medical Association) - ban chloroform
|
|
The list shown in this table is referenced.to view its references see: Template:Chloroform committees and commissions.
|
|