• positive regulation of calcium-mediated signaling • monocyte chemotaxis • positive regulation of natural killer cell chemotaxis • chemokine-mediated signaling pathway • cellular response to tumor necrosis factor • cell-cell signaling • response to virus • neutrophil chemotaxis • chemotaxis • establishment or maintenance of cell polarity • positive regulation of GTPase activity • cell adhesion • cellular response to interleukin-1 • immune response • positive regulation of ERK1 and ERK2 cascade • cellular response to interferon-gamma • response to toxic substance • signal transduction • positive regulation of calcium ion transport • inflammatory response • regulation of receptor activity • G-protein coupled receptor signaling pathway • cytokine-mediated signaling pathway • eosinophil chemotaxis • lymphocyte chemotaxis
Sources:Amigo / QuickGO
Orthologs
Species
Human
Mouse
Entrez
6351
20303
Ensembl
ENSG00000275824 ENSG00000277943 ENSG00000275302
ENSMUSG00000018930
UniProt
P13236
P14097
RefSeq (mRNA)
NM_002984
NM_013652
RefSeq (protein)
NP_996890 NP_002975
NP_038680
Location (UCSC)
Chr 17: 36.1 – 36.11 Mb
Chr 11: 83.66 – 83.66 Mb
PubMed search
[3]
[4]
Wikidata
View/Edit Human
View/Edit Mouse
Chemokine (C-C motif) ligand 4, also known as CCL4, is a protein which in humans is encoded by the CCL4 gene.[5]
Contents
1Function
2Interactions
3See also
4References
5Further reading
6External links
Function
CCL4, also known as Macrophage inflammatory protein-1β (MIP-1β) is a CC chemokine with specificity for CCR5 receptors. It is a chemoattractant for natural killer cells, monocytes and a variety of other immune cells.[6]
CCL4 is a major HIV-suppressive factor produced by CD8+ T cells.[7]
Perforin-low memory CD8+ T cells that normally synthesize MIP-1-beta.[8]
CCL4 is produced by: neutrophils, monocytes, B cells, T cells, fibroblasts, endothelial cells, and epithelial cells.[9]
Concentration of this chemokine has been shown to be inversely related with MicroRNA-125b. Concentration of CCL4 within the body increases with age, which may cause chronic inflammation and liver damage.[9][10]
Interactions
CCL4 has been shown to interact with CCL3.[11]
CCL4 binds to G protein-Coupled Receptors CCR5 and CCR8.[9]
^ abcGRCm38: Ensembl release 89: ENSMUSG00000018930 - Ensembl, May 2017
^"Human PubMed Reference:".
^"Mouse PubMed Reference:".
^Irving SG, Zipfel PF, Balke J, McBride OW, Morton CC, Burd PR, Siebenlist U, Kelly K (June 1990). "Two inflammatory mediator cytokine genes are closely linked and variably amplified on chromosome 17q". Nucleic Acids Research. 18 (11): 3261–70. doi:10.1093/nar/18.11.3261. PMC 330932. PMID 1972563.
^Bystry RS, Aluvihare V, Welch KA, Kallikourdis M, Betz AG (December 2001). "B cells and professional APCs recruit regulatory T cells via CCL4". Nature Immunology. 2 (12): 1126–32. doi:10.1038/ni735. PMID 11702067.
^Cocchi F, DeVico AL, Garzino-Demo A, Arya SK, Gallo RC, Lusso P (December 1995). "Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells". Science. 270 (5243): 1811–5. doi:10.1126/science.270.5243.1811. PMID 8525373.
^Kamin-Lewis R, Abdelwahab SF, Trang C, Baker A, DeVico AL, Gallo RC, Lewis GK (July 2001). "Perforin-low memory CD8+ cells are the predominant T cells in normal humans that synthesize the beta -chemokine macrophage inflammatory protein-1beta". Proceedings of the National Academy of Sciences of the United States of America. 98 (16): 9283–8. doi:10.1073/pnas.161298998. PMC 55412. PMID 11470920.
^ abcMorrison MD, Lundquist PG (April 1974). "Labyrinthine morphology and temperature in cryosurgery (guinea pig)". Acta Oto-Laryngologica. 77 (4): 261–73. doi:10.1111/acel.12294. PMC 4364832. PMID 25620312.
^Morimoto T, Takagi H, Kondo T (January 1985). "Canine pancreatic allotransplantation with duodenum (pancreaticoduodenal transplantation) using cyclosporin A". Nagoya Journal of Medical Science. 47 (1–2): 57–66. doi:10.1074/jbc.M113.526780. PMC 3887178. PMID 24273171.
^Guan E, Wang J, Norcross MA (April 2001). "Identification of human macrophage inflammatory proteins 1alpha and 1beta as a native secreted heterodimer". The Journal of Biological Chemistry. 276 (15): 12404–9. doi:10.1074/jbc.M006327200. PMID 11278300.
Muthumani K, Desai BM, Hwang DS, Choo AY, Laddy DJ, Thieu KP, Rao RG, Weiner DB (April 2004). "HIV-1 Vpr and anti-inflammatory activity". DNA and Cell Biology. 23 (4): 239–47. doi:10.1089/104454904773819824. PMID 15142381.
Conti L, Fantuzzi L, Del Cornò M, Belardelli F, Gessani S (2005). "Immunomodulatory effects of the HIV-1 gp120 protein on antigen presenting cells: implications for AIDS pathogenesis". Immunobiology. 209 (1–2): 99–115. doi:10.1016/j.imbio.2004.02.008. PMID 15481145.
Joseph AM, Kumar M, Mitra D (January 2005). "Nef: "necessary and enforcing factor" in HIV infection". Current HIV Research. 3 (1): 87–94. doi:10.2174/1570162052773013. PMID 15638726.
Zhao RY, Bukrinsky M, Elder RT (April 2005). "HIV-1 viral protein R (Vpr) & host cellular responses". The Indian Journal of Medical Research. 121 (4): 270–86. PMID 15817944.
Li L, Li HS, Pauza CD, Bukrinsky M, Zhao RY (2006). "Roles of HIV-1 auxiliary proteins in viral pathogenesis and host-pathogen interactions". Cell Research. 15 (11–12): 923–34. doi:10.1038/sj.cr.7290370. PMID 16354571.
King JE, Eugenin EA, Buckner CM, Berman JW (April 2006). "HIV tat and neurotoxicity". Microbes and Infection. 8 (5): 1347–57. doi:10.1016/j.micinf.2005.11.014. PMID 16697675.
Napolitano M, Modi WS, Cevario SJ, Gnarra JR, Seuanez HN, Leonard WJ (September 1991). "The gene encoding the Act-2 cytokine. Genomic structure, HTLV-I/Tax responsiveness of 5' upstream sequences, and chromosomal localization". The Journal of Biological Chemistry. 266 (26): 17531–6. PMID 1894635.
Irving SG, Zipfel PF, Balke J, McBride OW, Morton CC, Burd PR, Siebenlist U, Kelly K (June 1990). "Two inflammatory mediator cytokine genes are closely linked and variably amplified on chromosome 17q". Nucleic Acids Research. 18 (11): 3261–70. doi:10.1093/nar/18.11.3261. PMC 330932. PMID 1972563.
Baixeras E, Roman-Roman S, Jitsukawa S, Genevee C, Mechiche S, Viegas-Pequignot E, Hercend T, Triebel F (November 1990). "Cloning and expression of a lymphocyte activation gene (LAG-1)". Molecular Immunology. 27 (11): 1091–102. doi:10.1016/0161-5890(90)90097-J. PMID 2247088.
Lipes MA, Napolitano M, Jeang KT, Chang NT, Leonard WJ (December 1988). "Identification, cloning, and characterization of an immune activation gene". Proceedings of the National Academy of Sciences of the United States of America. 85 (24): 9704–8. doi:10.1073/pnas.85.24.9704. PMC 282843. PMID 2462251.
Brown KD, Zurawski SM, Mosmann TR, Zurawski G (January 1989). "A family of small inducible proteins secreted by leukocytes are members of a new superfamily that includes leukocyte and fibroblast-derived inflammatory agents, growth factors, and indicators of various activation processes". Journal of Immunology. 142 (2): 679–87. PMID 2521353.
Zipfel PF, Balke J, Irving SG, Kelly K, Siebenlist U (March 1989). "Mitogenic activation of human T cells induces two closely related genes which share structural similarities with a new family of secreted factors". Journal of Immunology. 142 (5): 1582–90. PMID 2521882.
Chang HC, Reinherz EL (June 1989). "Isolation and characterization of a cDNA encoding a putative cytokine which is induced by stimulation via the CD2 structure on human T lymphocytes". European Journal of Immunology. 19 (6): 1045–51. doi:10.1002/eji.1830190614. PMID 2568930.
Miller MD, Hata S, De Waal Malefyt R, Krangel MS (November 1989). "A novel polypeptide secreted by activated human T lymphocytes". Journal of Immunology. 143 (9): 2907–16. PMID 2809212.
Adams MD, Kerlavage AR, Fleischmann RD, Fuldner RA, Bult CJ, Lee NH, Kirkness EF, Weinstock KG, Gocayne JD, White O (September 1995). "Initial assessment of human gene diversity and expression patterns based upon 83 million nucleotides of cDNA sequence" (PDF). Nature. 377 (6547 Suppl): 3–174. PMID 7566098.
Post TW, Bozic CR, Rothenberg ME, Luster AD, Gerard N, Gerard C (December 1995). "Molecular characterization of two murine eosinophil beta chemokine receptors". Journal of Immunology. 155 (11): 5299–305. PMID 7594543.
Combadiere C, Ahuja SK, Murphy PM (July 1995). "Cloning and functional expression of a human eosinophil CC chemokine receptor". The Journal of Biological Chemistry. 270 (28): 16491–4. doi:10.1074/jbc.270.28.16491. PMID 7622448.
Paolini JF, Willard D, Consler T, Luther M, Krangel MS (September 1994). "The chemokines IL-8, monocyte chemoattractant protein-1, and I-309 are monomers at physiologically relevant concentrations". Journal of Immunology. 153 (6): 2704–17. PMID 8077676.
External links
Human CCL4 genome location and CCL4 gene details page in the UCSC Genome Browser.
v
t
e
PDB gallery
1hum: SOLUTION STRUCTURE OF THE CHEMOKINE HMIP-1BETA(SLASH)ACT-2 BY MULTI-DIMENSIONAL NMR: A NOVEL CHEMOKINE DIMER
1hun: SOLUTION STRUCTURE OF THE CHEMOKINE HMIP-1BETA(SLASH)ACT-2 BY MULTI-DIMENSIONAL NMR: A NOVEL CHEMOKINE DIMER
1je4: Solution structure of the monomeric variant of the chemokine MIP-1beta
2ffk: Solution structure of the complex between poxvirus-encoded CC chemokine inhibitor vCCI and human MIP-1beta, minimized average structure
2fin: Solution Structure of the complex between poxvirus-encoded CC chemokine inhibitor vCCI and human MIP-1beta, ensemble structure
v
t
e
Cell signaling: cytokines
By family
Chemokine
CCL
CCL1
CCL2/MCP1
CCL3/MIP1α
CCL4/MIP1β
CCL5/RANTES
CCL6
CCL7
CCL8
CCL9
CCL11
CCL12
CCL13
CCL14
CCL15
CCL16
CCL17
CCL18/PARC/DCCK1/AMAC1/MIP4
CCL19
CCL20
CCL21
CCL22
CCL23
CCL24
CCL25
CCL26
CCL27
CCL28
CXCL
CXCL1/KC
CXCL2
CXCL3
CXCL4
CXCL5
CXCL6
CXCL7
CXCL8/IL8
CXCL9
CXCL10
CXCL11
CXCL12
CXCL13
CXCL14
CXCL15
CXCL16
CXCL17
CX3CL
CX3CL1
XCL
XCL1
XCL2
TNF
TNFA
Lymphotoxin
TNFB/LTA
TNFC/LTB
TNFSF4
TNFSF5/CD40LG
TNFSF6
TNFSF7
TNFSF8
TNFSF9
TNFSF10
TNFSF11
TNFSF13
TNFSF13B
EDA
Interleukin
Type I (grouped by receptor subunit)
γ chain
IL2/IL15
IL4/IL13
IL7
IL9
IL21
β chain
IL3
IL5
GMCSF
IL6 like/gp130
IL6
IL11
IL27
IL30
IL31
+non IL OSM
LIF
CNTF
CTF1
IL12 family/IL12RB1
IL12
IL23
IL27
IL35
Other
IL14
IL16
IL32
IL34
Type II
IL10 family
IL10/IL22
IL19
IL20
IL24
IL26
Interferon type III
IL28/IFNL2+3
IL29/IFNL1
Interferon
I
IFNA1
IFNA2
IFNA4
IFNA5
IFNA6
IFNA7
IFNA8
IFNA10
IFNA13
IFNA14
IFNA16
IFNA17
IFNA21
IFNB1
IFNK
IFNW1
II
IFNG
Ig superfamily
IL1 family: IL1A/IL1F1
IL1B/IL1F2
1Ra/IL1F3
IL1F5
IL1F6
IL1F7
IL1F8
IL1F9
IL1F10
33/IL1F11
18/IL1G
IL17 family
IL17/IL25 (IL17A)
Other
Hematopoietic
KITLG
Colony-stimulating factor
SPP1
MIF
By function/ cell
proinflammatory cytokine
IL1
TNFA
Monokine
Lymphokine
Th1
IFNγ
TNFβ
Th2
IL4
IL5
IL6
IL10
IL13
v
t
e
Chemokine receptor modulators
CC
CCR1
Agonists: CCL4 (MIP-1β)
CCL5 (RANTES)
CCL6
CCL9 (CCL10)
CCL14
CCL15
CCL16
CCL23
CCR2
Agonists: CCL2
CCL8
CCL12
CCL16
NAMs: Cenicriviroc (TAK-652, TBR-652)
CCR3
Agonists: CCL5 (RANTES)
CCL7
CCL11
CCL13
CCL15
CCL18
CCL24
CCL26
CCL28
CCR4
Agonists: CCL3 (MIP-1α)
CCL5 (RANTES)
CCL17
CCL22
Antibodies: Mogamulizumab (against CCR4)
CCR5
Agonists: CCL3 (MIP-1α)
CCL4 (MIP-1β)
CCL5 (RANTES)
CCL8
CCL11
CCL13
CCL14
CCL16
NAMs: Aplaviroc
Cenicriviroc (TAK-652, TBR-652)
INCB009471
Maraviroc
Vicriviroc
Antibodies: PRO-140
CCR6
Agonists: CCL20
CCR7
Agonists: CCL19
CCL21
CCR8
Agonists: CCL1
CCL16
CCR9
Agonists: CCL25
CCR10
Agonists: CCL27
CCL28
CCR11
Agonists: CCL19
CCL21
CCL25
Ungrouped
Antibodies: Bertilimumab (against CCL11)
Carlumab (against CCL2)
CXC
CXCR1 (IL-8Rα)
Agonists: CXCL6
Emoctakin
Interleukin-8 (CXCL8, GCP-1)
Antagonists: Navarixin
NAMs: Ladarixin
Reparixin (repertaxin)
CXCR2 (IL-8Rβ)
Agonists: CXCL1 (MGSA)
CXCL2
CXCL3
CXCL5
CXCL6
CXCL7
Emoctakin
Garnocestim
Interleukin-8 (CXCL8, GCP-1)
Antagonists: Danirixin
Elubrixin
Navarixin
NAMs: Ladarixin
Reparixin (repertaxin)
CXCR3
Agonists: CXCL4 (PF4)
CXCL9 (MIG)
CXCL10 (IP-10)
CXCL11 (I-TAC)
Iroplact
Antibodies: Eldelumab (against CXCL10)
CXCR4
Agonists: MIF
SDF-1 (CXCL12)
Ubiquitin
Antagonists: Mavorixafor
Plerixafor (AMD3100)
Antibodies: Ulocuplumab (against CXCR4)
CXCR5
Agonists: CXCL13
CXCR6
Agonists: CXCL16
CXCR7
Agonists: CXCL11 (I-TAC)
SDF-1 (CXCL12)
PAMs: Plerixafor (AMD3100)
C (XC)
XCR1
Agonists: Lymphotactin-α (XCL1)
Lymphotactin-β (XCL2)
Antibodies: Pateclizumab
CX3C
CX3CR1
Agonists: Fractalkine (CX3CL1)
Others
CCBP2
Agonists: CC (β) chemokines
CMKLR1
Agonists: Chemerin
Resolvin E1
See also
Receptor/signaling modulators
Signaling peptide/protein receptor modulators
Cytokine receptor modulators
This article on a gene on human chromosome 17 is a stub. You can help Wikipedia by expanding it.
v
t
e
UpToDate Contents
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
1. 肝線維症の新しい治療法 emerging therapies for hepatic fibrosis
Protective effects of Ziyang tea polysaccharides on CCl4-induced oxidative liver damage in mice.
Wang D, Zhao Y, Sun Y, Yang X.SourceKey Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
Food chemistry.Food Chem.2014 Jan 15;143:371-8. doi: 10.1016/j.foodchem.2013.08.005. Epub 2013 Aug 11.
This study was designed to investigate the hepatoprotective effects of the tea polysaccharides (ZTPs) extracted from a selenium-enriched Ziyang green tea (Camellia sinensis). ZTPs were identified as the heteropolysaccharides with glucose (31.4%), arabinose (23.5%) and galactose (21.8%) being the mai
Dogs immunized with LBSap vaccine displayed high levels of IL-12 and IL-10 cytokines and CCL4, CCL5 and CXCL8 chemokines in the dermis.
Vitoriano-Souza J, Moreira Nd, Menezes-Souza D, Roatt BM, de Oliveira Aguiar-Soares RD, Siqueira-Mathias FA, de Oliveira Cardoso JM, Giunchetti RC, de Sá RG, Corrêa-Oliveira R, Carneiro CM, Reis AB.SourceLaboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas/NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil.
Molecular immunology.Mol Immunol.2013 Dec 31;56(4):540-8. doi: 10.1016/j.molimm.2013.05.231. Epub 2013 Aug 1.
The complex interplay between cytokines and chemokines regulates innate and adaptive immune responses against pathogens; specifically, cytokine and chemokine expression drives activation of immune effector cells and their recruitment to tissue infection sites. Herein, we inoculated dogs with Leishma
Characterisation of polysaccharides from green tea of Huangshan Maofeng with antioxidant and hepatoprotective effects.
Lu X, Zhao Y, Sun Y, Yang S, Yang X.SourceKey Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
Food chemistry.Food Chem.2013 Dec 15;141(4):3415-23. doi: 10.1016/j.foodchem.2013.06.058. Epub 2013 Jun 22.
This study was to examine the hepatoprotective effects of polysaccharides from green tea of Huangshan Maofeng (HMTP) against CCl4-induced oxidative damage in mice. HMTP is an acidic heteropolysaccharide with galactose (35.0%, mol.%), arabinose (28.9%) and galacturonic acid (11.3%) being the main mon
Differences in the Toxicities of Trichothecene Mycotoxins, Deoxynivalenol and Nivalenol, in Cultured Cells
NAGASHIMA Hitoshi,NAKAGAWA Hiroyuki
Japan Agricultural Research Quarterly: JARQ 48(4), 393-397, 2014
… While exposure to DON significantly induced the secretion of anti-hematopoietic cytokines macrophage inflammatory protein-1α (MIP-1α/CCL3) and MIP-1β/CCL4, treatment with NIV decreased the secretion of these cytokines in HL60 cells, indicating that the toxicity mechanisms of these toxins differ. …
Roles of Oxidized Diacylglycerol for Carbon Tetrachloride-induced Liver Injury and Fibrosis in Mouse
Takekoshi Susumu,Kitatani Kanae,Yamamoto Yorihiro
ACTA HISTOCHEMICA ET CYTOCHEMICA, 2014
… In the present study, we explored the roles of oxidized DAG in hepatic fibrogenesis using mice, the livers of which developed fibrosis by long-term administration of carbon tetrachloride (CCl4). … Liver fibrosis models were created by 4- or 8-week repetitive subcutaneous injections of CCl4 to the backs of C57BL/6J mice. … The amount of oxidized DAG was significantly increased in the CCl4-treated group. …