出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2013/07/11 04:15:28」(JST)
Fermentation is a metabolic process converting sugar to acids, gases and/or alcohol using yeast or bacteria. In its strictest sense, fermentation is the absence of the electron transport chain and takes a reduced carbon source, such as glucose, and makes products like lactic acid or acetate. No oxidative phosphorylation is used, only substrate level phosphorylation, which yields a much lower amount of ATP. Fermentation is also used much more broadly to refer to the bulk growth of microorganisms on a growth medium. The science of fermentation is known as zymology.
Fermentation has been used by humans for the production of food and beverages since the Neolithic. The process is often used to produce wine (see fermentation in winemaking) and beer, but fermentation is also employed in preservation to create lactic acid in sour foods such as pickled cucumbers, kimchi and yogurt (see fermentation in food processing).
Fermentation is a form of anaerobic digestion that generates adenosine triphosphate (ATP) by the process of substrate-level phosphorylation. The energy for generating ATP comes from the oxidation of organic compounds, such as carbohydrates.[1] In contrast, during respiration is where electrons are donated to an exogenous electron acceptor, such as oxygen, via an electron transport chain. Fermentation is important in anaerobic conditions when there is no oxidative phosphorylation to maintain the production of ATP (adenosine triphosphate).
Contents
|
Fermentation does not necessarily have to be carried out in an anaerobic environment. For example, even in the presence of abundant oxygen, yeast cells greatly prefer fermentation to aerobic respiration, as long as sugars are readily available for consumption (a phenomenon known as the Crabtree effect).[2] The antibiotic activity of hops also inhibits aerobic metabolism in yeast.
Fermentation uses an endogenous, organic electron acceptor.[1] A widely used endogenous electron acceptor is pyruvate. During fermentation, pyruvate is metabolized to various compounds through several processes:
Sugars are the most common substrate of fermentation, and typical examples of fermentation products are ethanol, lactic acid, lactose, and hydrogen gas (H2). However, more exotic compounds can be produced by fermentation, such as butyric acid and acetone. Yeast carries out fermentation in the production of ethanol in beers, wines, and other alcoholic drinks, along with the production of large quantities of carbon dioxide. Fermentation occurs in mammalian muscle during periods of intense exercise where oxygen supply becomes limited, resulting in the creation of lactic acid.[3]
Fermentation products contain chemical energy (they are not fully oxidized), but are considered waste products, since they cannot be metabolized further without the use of oxygen.
The chemical equation below shows the alcoholic fermentation of glucose, whose chemical formula is C6H12O6.[5] One glucose molecule is converted into two ethanol molecules and two carbon dioxide molecules:
C2H5OH is the chemical formula for ethanol.
Before fermentation takes place, one glucose molecule is broken down into two pyruvate molecules. This is known as glycolysis.[5][6]
Lactic acid fermentation is the simplest type of fermentation. In essence, it is a redox reaction. In anaerobic conditions, the cell’s primary mechanism of ATP production is glycolysis. Glycolysis reduces (i.e. transfers electrons to) nicotinamide adenine dinucleotide (NAD+), forming NADH. However there is a limited supply of NAD+ available in any given cell. For glycolysis to continue, NADH must be oxidized (i.e. have electrons taken away) to regenerate the NAD+ that is used in glycolysis. In an aerobic environment, where oxygen is available, oxidation of NADH is usually done through an electron transport chain in a process called oxidative phosphorylation, but oxidative phosphorylation cannot occur in anaerobic environments because oxygen is absent due to the pathway's dependence on the terminal electron acceptor of oxygen.[7] Instead, the NADH donates its extra electrons to the pyruvate molecules formed during glycolysis. Since the NADH has lost electrons, NAD+ regenerates and is again available for glycolysis. Lactic acid, for which this process is named, is formed by the reduction of pyruvate.[7]
In heterolactic acid fermentation, one molecule of pyruvate is converted to lactate; the other is converted to ethanol and carbon dioxide. In homolactic acid fermentation, both molecules of pyruvate are converted to lactate. Homolactic acid fermentation is unique because it is one of the only respiration processes to not produce a gas as a byproduct.
Homolactic fermentation breaks down the pyruvate into lactate. It occurs in the muscles of animals when they need energy faster than the blood can supply oxygen. It also occurs in some kinds of bacteria (such as lactobacilli) and some fungi. It is this type of bacteria that converts lactose into lactic acid in yogurt, giving it its sour taste. These lactic acid bacteria can be classed as homofermentative, where the end-product is mostly lactate, or heterofermentative, where some lactate is further metabolized and results in carbon dioxide, acetate, or other metabolic products.
The process of lactic acid fermentation using glucose is summarized below.[8] In homolactic fermentation, one molecule of glucose is converted to two molecules of lactic acid:
or one molecule of lactose and one molecule of water make four molecules of lactate (as in some yogurts and cheeses):
In heterolactic fermentation, the reaction proceeds as follows, with one molecule of glucose being converted to one molecule of lactic acid, one molecule of ethanol, and one molecule of carbon dioxide:[8]
Before lactic acid fermentation can occur, the molecule of glucose must be split into two molecules of pyruvate. This process is called glycolysis.[9]
To extract chemical energy from glucose, the glucose molecule must be split into two molecules of pyruvate.[9] This process generates two molecules of NADH and also four molecules of adenosine triphosphate (ATP), yet there is only net gain of two ATP molecules considering the two initially consumed.[8]
The chemical formula of pyruvate is CH3COCOO−. Pi stands for the inorganic phosphate. As shown by the reaction equation, glycolysis causes the reduction of two molecules of NAD+ to NADH.[8] Two ADP molecules are also converted to two ATP and two water molecules via substrate-level phosphorylation.
In aerobic respiration, the pyruvate produced by glycolysis is oxidized completely, generating additional ATP and NADH in the citric acid cycle and by oxidative phosphorylation. However, this can occur only in the presence of oxygen. Oxygen is toxic to organisms that are obligate anaerobes, and are not required by facultative anaerobic organisms. In the absence of oxygen, one of the fermentation pathways occurs in order to regenerate NAD+; lactic acid fermentation is one of these pathways.[8]
Hydrogen gas is produced in many types of fermentation (mixed acid fermentation, butyric acid fermentation, caproate fermentation, butanol fermentation, glyoxylate fermentation), as a way to regenerate NAD+ from NADH. Electrons are transferred to ferredoxin, which in turn is oxidized by hydrogenase, producing H2.[5] Hydrogen gas is a substrate for methanogens and sulfate reducers, which keep the concentration of hydrogen low and favor the production of such an energy-rich compound,[10] but hydrogen gas at a fairly high concentration can nevertheless be formed, as in flatus.
As an example of mixed acid fermentation, bacteria such as Clostridium pasteurianum ferment glucose producing butyrate, acetate, carbon dioxide and hydrogen gas:[11] The reaction leading to acetate is:
Glucose could theoretically be converted into just CO2 and H2, but the global reaction releases little energy.
Acetic acid can also undergo a dismutation reaction to produce methane and carbon dioxide:[12][13]
This disproportionation reaction is catalysed by methanogen archaea in their fermentative metabolism. One electron is transferred from the carbonyl function (e– donor) of the carboxylic group to the methyl group (e– acceptor) of acetic acid to respectively produce CO2 and methane gas.
The use of fermentation, particularly for beverages, has existed since the Neolithic and has been documented dating from 7000–6600 BCE in Jiahu, China,[14] 6000 BCE in Georgia,[15] 3150 BCE in ancient Egypt,[16] 3000 BCE in Babylon,[17] 2000 BCE in pre-Hispanic Mexico, [17] and 1500 BC in Sudan.[18]
The first solid evidence of the living nature of yeast appeared between 1837 and 1838 when three publications appeared by C. Cagniard de la Tour, T. Swann, and F. Kuetzing, each of whom independently concluded as a result of microscopic investigations that yeast is a living organism that reproduces by budding. It is perhaps because wine, beer, and bread were each basic foods in Europe that most of the early studies on fermentation were done on yeasts, with which they were made. Soon, bacteria were also discovered; the term was first used in English in the late 1840s, but it did not come into general use until the 1870s, and then largely in connection with the new germ theory of disease.[19]
Louis Pasteur (1822–1895), during the 1850s and 1860s, showed that fermentation is initiated by living organisms in a series of investigations.[7] In 1857, Pasteur showed that lactic acid fermentation is caused by living organisms.[20] In 1860, he demonstrated that bacteria cause souring in milk, a process formerly thought to be merely a chemical change, and his work in identifying the role of microorganisms in food spoilage led to the process of pasteurization.[21] In 1877, working to improve the French brewing industry, Pasteur published his famous paper on fermentation, "Etudes sur la Bière", which was translated into English in 1879 as "Studies on Fermentation".[22] He defined fermentation (incorrectly) as "Life without air",[23] but correctly showed that specific types of microorganisms cause specific types of fermentations and specific end-products.
Although showing fermentation to be the result of the action of living microorganisms was a breakthrough, it did not explain the basic nature of the fermentation process, or prove that it is caused by the microorganisms that appear to be always present. Many scientists, including Pasteur, had unsuccessfully attempted to extract the fermentation enzyme from yeast.[23] Success came in 1897 when the German chemist Eduard Buechner ground up yeast, extracted a juice from them, then found to his amazement that this "dead" liquid would ferment a sugar solution, forming carbon dioxide and alcohol much like living yeasts.[24] The "unorganized ferments" behaved just like the organized ones. From that time on, the term enzyme came to be applied to all ferments. It was then understood that fermentation is caused by enzymes that are produced by microorganisms.[25] In 1907, Buechner won the Nobel Prize in chemistry for his work.[26]
Advances in microbiology and fermentation technology have continued steadily up until the present. For example, in the late 1970s, it was discovered that microorganisms could be mutated with physical and chemical treatments to be higher-yielding, faster-growing, tolerant of less oxygen, and able to use a more concentrated medium.[27] Strain selection and hybridization developed as well, affecting most modern food fermentations.
The word fermentation is derived from the Latin verb fervere, which means to boil (same root as effervescence). It is thought to have been first used in the late fourteenth century in alchemy, but only in a broad sense. It was not used in the modern scientific sense until around 1600.[28] The word yeast is derived from *jes- the PIE word meaning boil (cf. Greek zein, Welsh ias, and Sanskrit yasyati).[29]
|
|
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
リンク元 | 「ホモ乳酸発酵」 |
.